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Quantum hydrodynamics of interacting electrons with a parabolic single particle spectrum is studied using
the Calogero-Sutherland model. The effective action and modulation equations, describing evolution of periodic
excitations in the fluid, are derived. Applications to the problem of a single electron tunneling into the FQHE

edge state are discussed.

PACS: 74.20.Mn

It is known since 60’s [1] that Landau Fermi liquid
theory is not applicable to one dimensional metals. The
thermodynamic of one dimensional electronic system is
explained by Tomonaga-Luttinger (TL) model [2, 3].
This model is a simplified version of a quantum hydro-
dynamics that takes into account only a single mode of
sound excitation (phonons) of an electronic fluid. This
approximation is equivalent to replacing a true elec-
tronic single-particle spectrum by the linear spectrum
of Dirac’s fermions. Though the TL model accounts for
thermodynamics it fails for effects that involve break-
ing of the particle-hole symmetry. In other words only
the diagonal part of kinetic coefficient matrix [4] can be
found using this approach, while all non-diagonal terms
vanish in this approximation.

Among phenomena missed by the TL approximation
are thermopower, photovoltaic effect and Coulomb drag
with a small momentum transfer. To solve any of this
problems one needs to use quantum hydrodynamic with-
out making one mode approximation.

The problem of single particle spectrum curvature
and electron-electron interaction was recently addressed
in Ref. [5], who proposed to mimics a nonlinear spec-
trum by two types of electrons with different Dirac’s
spectra. This approach agrees with perturbative ex-
pansion of exact results for Calogero-Sutherland (CS)
model [6].

Here, we would follow a different route of “exact”
bosonization, originally developed in Ref. [7] for the sake
of matrix models. As expected [8], a curvature of fermi-
onic spectrum leads to the cubic in density terms in a
bosonic Hamiltonian. Though formally a bosonic de-
scription is achieved, the resulting theory is non linear.
This renders this method extremely difficult for appli-
cations and no new results based on it are reported, as
yet.
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To gain an understanding of one dimensional hydro-
dynamics we study the special case of electrons with
singular 1/r? interaction. This problem is known as
the Calogero-Sutherland model (CS) [9] and has numer-
ous applications in condensed matter and nuclear physics
[10]. Being exactly solvable [11, 12] CS model posses an
infinite number of integrals of motion. That render its
hydrodynamics special and easier to analyze.

The connection between the hydrodynamic excita-
tions of the CS fluid and correlation functions of various
operators is not straightforward. The simplest known
example is the soliton, a solution of hydrodynamical
equation of motion propagating without changing its
shape. In original description it corresponds to the many
body excitation, called anyon. Anyons obey a special
“fractional” statistics, which is neither Fermi nor Bose
like. The correlation function of anyons is similar to the
one of free fermions, with the values of Fermi velocity
and momentum renormalized by interaction [13].

In order to find other correlation function (such as
electrons’ Green function) one needs to solve the sys-
tem of saddle point equations, that are the continuity
and the Euler equation for CS fluid. This is a very diffi-
cult problem. It is considerably simplified if the solution
is a periodic wave with slowly changing wave parame-
ters. In this case, the original hydrodynamic equations
may be replaced by Whitham’s modulation equations
[14]. To put it simple, the TL model describes particle-
hole excitations of fermionic problem as sound modes
(vibrations) of one dimensional harmonic string. The
modulation theory describes particle-hole excitations as
vibration of an anharmonic string.

The modulation technique is well developed for vari-
ous models of dissipationless hydrodynamics. In partic-
ular for the Benjamin-Ono (BO) equation [15, 16], that
describes dynamics of internal waves in stratified fluids
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of great depth. As it was stressed recently [17], this two
problems are mathematically related. Remarkably, the
classical BO equation appears in FQHE [18], governing
the evolution of a semiclassical wave packets containing
a large number of fermions. It is therefore not surprising
that some formal aspects of the derivations of modula-
tion theory for the BO and the CS models are similar.
The final results of these two models are nevertheless
different.

The structure of this work is a following: starting
with the microscopic description of the CS model we
pass into its hydrodynamics (the technical details are
given in the Appendix). Next, we consider periodic den-
sity excitation of the CS model and derive its evolution
equations. Finally, we apply this machinery to the prob-
lem of a single electron tunneling into the CS liquid.

The microscopic Hamiltonian of CS model is given
by
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Here A is a strength of particle interaction, m is an elec-
tron mass, z; is a coordinate of the particle on a circle
with the perimeter L. Now on we use the convention
h=1,m=1.

On large scales and long time CS model is described
by hydrodynamical Hamiltonian

1
H = /dw [Epvz + U[p]] (2)
(the details of derivation that follows Ref. [7, 19] are pre-

sented in Appendix). The whole specific of CS model is
incorporated in potential energy term
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where the Hilbert transform is defined as
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The conventional TL model can be obtained by expan-
sion of the Hamiltonian (2) up to second order in fluc-
tuations (due to conservation laws the velocity v and
density operators Jp are of the same order) and neglect-
ing the high gradient terms.

It is convenient to reformulate the problem in La-
grangian description, defining the action

S[p, v] :/dwdt[—vazlatp— %pv2 —Ulp]|- (5)

This action reaches its minimum provided saddle point
equations are satisfied: the continuity

pt+ 8z(pv) =0 (6)
and Euler equation

vt + VU +w, = 0. (7N
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Here the enthalpy
w = J_U = 7.‘-_2 2
~\dép/) 2 p

The dependence on the interaction constant in the limit
of strong interaction (A > 1) had been eliminated by
the rescaling (z = /X, p = pA,t = t/)). Now on we use
the rescaled coordinates, omitting the tilde.

To derive modulation equation it is convenient to in-
tegrate the velocity field out
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This Lagrangian has one-periodic density wave solutions
[20]
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where § = kx — wt. The dispersion relation between
amplitude of the wave

k 1
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and a wave vector is determined by
k3

tanh(a) = P (12)
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To proceed further we replace the Polychronakos solu-
tion with a modulated one

O(z,t) = k(z,t)z — w(z, t)t (13)

and allow pg to depend on coordinate and time as well.
Strictly speaking this is no longer the minimum of the
action (5). However under the condition the modula-
tion technique works, this solution minimizes the action
“in average”. We define Lagrangian averaged over one
period of oscillations

L= [ Srlo). (14)
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After some straightforward, though lengthy calculation,
one finds a Lagrangian of anharmonic string
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Here v = —38, '8;po. Applying the least action condition
to the averaged Lagrangian
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one obtains modulation eqs. for CS model
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These egs. govern the dynamics of the wave parameters
in the density excitations propagating through CS fluid.

Next, we apply this theory to study an evolution of
a distortion caused by adding one electron to the fluid.
This problem is a prototype for a quantum tunneling
from the normal metal into the edge state of FQHE.

An added electron causes a density fluctuation that
splits into two chiral parts, moving in the opposite di-
rections. Using Riemann invariants [21]

u=v+mp, (18)
G=v—7p (19)

one approximates egs.(6), (7) by
up + uuy, =0, U+ ul, =0. (20)

The tunneling at point z = 0 corresponds to the initial
conditions ug(£) = €/(£2 + €2), (where € has a scale of
an electron wave length). To study right chiral sector
we pass into a reference frame moving with a sound ve-
locity to the right (¢ = z — wpt). Solving Hopf eq.(20)
by Godograph method we find an implicit solution

u = ug (& — ut). (21)
Solving cubic equation(21), we find an explicit solution

£
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where ¢ = 3(et/4)'/3,£, =t/e are tailing and leading
edge coordinates. Inside the interval (- < £ < &) so-
lution of eq. (21) is multivalued and we denote three
different branches by f; > fa > f3. The multi-validity
of solution reflects a wave breaking phenomena. The
single value solution inside the interval ({_- < £ < &) is
restored by keeping the second-order spatial derivatives
in eq. (8). An elegant way of dealing with second-order
gradient terms is to use the modulation technique de-
veloped above. Let us assume that for (£. < & < &)
density is an oscillating function satisfying modulation
eqs.(17) with a proper boundary condition [22].

At the boundaries, the particle density found from
Hopf equation, should match the density, averaged over
the period of fluctuations, inside the oscillating interval

k
= —. 22
() = po+ 5 (22)
In addition, the amplitude of the oscillation vanished
at the trailing edge

A=0, £=¢ (23)

and the wave vector vanishes at the leading edge

It is convenient to define phase velocity ¢ = w/k and
hydrodynamic velocity V' = v/po. In a new variables
eq.(23) can be rewritten as

k
= —. 25
c=s+ 5 (25)
Solving egs.(17), we find that electron tunneling into CS
liquid excites density wave with phase velocity and wave
vector given by
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As we see, the excitation that follow electron tunneling
are quite different from the anyon tunneling [13]. The
later results in the creation of a single soliton propagat-
ing with a constant velocity through the fluid. Electron’s
tunneling causes a spreading density evolution that con-
sist of many picks with linearly increasing phase velocity.

The large number of oscillations experienced by the
fluid density and the smooth dependence of wave para-
meters a posteriori justifies the validity of modulation
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technique. One can check, using eq. (23), that solution
eq. (26) respects the particle conservation and accounts
for the half electrons moving to the right (solution for
another half of electron moving to the left differs by sign
change of a sound velocity).

The periodic density wave that develops after the
tunneling can be viewed as a superposition of anyons,
with individual anyone corresponding to the picks of the
density oscillations. Therefore eq.(26) describe a decay
of an electron into a large number of quasiparticles of CS
model. This process may be detected by measurement
the time dependence of a current that follows the tunnel-
ing event. Unlike the fractional charge measurements in
shot noise experiments [23, 24], the tunneling discussed
above is from normal metal to the FQHE state. There-
fore the fractionalization of the elementary charge does
not show up in a low frequency shot noise, but in the
finite frequency noise of a current pulse.

In this work we developed modulation theory for the
CS model. We applied this theory to the problem of a
single-electron tunneling. We found an evolution of a
current pulse that followed the tunneling event.

This work was motivated by discussion with
I. Gruzberg and P.B. Wiegmann, from whom I learned
various mathematical ideas used in this paper. I
benefited from discussion with A.Kamenev, D. Maslov,
A.Mirlin, M. Stepanov and M. Stone. I acknowledge
the Memorial University of Newfoundland, where large
part of this work was done, for the hospitality. My
research was supported by NSF-DMR-0308377.

Appendix:

Derivation of Hydrodynamical Theory. Con-
sider a ring geometry. Electron’s coordinate is repre-
sented by a complex variable z, = Lei®~ where 6 is an
angle along the circle of radius L. In this variables the
Hamiltonian eq.(1) is given by

1 2N
H:QZ +Z| _Z|2 (27)
j=1 i

The ground state of the Hamiltonian wave function of
(27) can be found exactly

aN —A(2N-1)/2
Ty = (H z,-) |APLA, (28)
i=1
where
2N
A= |](z — 2j) (29)
i<j

is Vandermonde determinant. Excited states are given
by

Y, = Woly, (30)

where Jack polynomials J,; are parameterized by parti-
tion k. The problem had been reduced to the properties

of the new bosonic Hamiltonian
Hg = ¥;'HY, (31)

that acts in the Hilbert space of symmetric wave func-
tions. It is given by

ZDM,\ZZ’”J D; - D;),

i<j

(32)

where D; = 2;0;. Aiming for a second quantization one
defines so called collective variables

2N 2
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Z Flp
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(33)

In terms of collective variables the bosonic Hamiltonian
can be rewritten as [19]
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So far the transformation have been exact. Passing to
the hydrodynamic limit (N — oo, = oo 2N/L — p
one arrives to eq.(2); z is a coordinate along the circle
(x = %0), the linear density p(z) = 2%p(0). The modes
of velocity operator are defined as

Vp = 21 (—n

It is easy to see that these definitions are consistent with
a standard commutation [25]

[v(z), p(v)] = —id'(z — y).

o + %pnsgn(n)) . (35)

(36)
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