Figure 2 shows the anisotropy b/a as a function of $E_{\gamma max}$. The anisotropy was obtained by least squares, by representing the angular distributions by the function $W(\theta) = a + b \sin^2 \theta$ in nine intervals of the angle θ . The values of b/a were corrected for the content of even-even nuclei, using the anisotropy data from [7]. The data on the anisotropy indicate that it varies non-monotonically with changing sign in the region of 8.10 and 10.6 MeV. The negative anisotropy near 13.7 MeV corresponds apparently to the threshold of emission fission of U^{235} . The positive anisotropy at $E_{\gamma max} = 7$ MeV was obtained from three measurements.

The presence of a peak in the cross-section curve at E_{γ} = 7 MeV and the presence, in part, of a dip in the 8 - 10 MeV region may be due to a difference in the sign of the anisotropy. The investigations are being continued.

- [1] A. S. Penfold and J. E. Leiss, Phys. Rev. <u>114</u>, 1332 (1959).
- [2] A. M. Khan and J. W. Knowles, Nucl. Phys. $\overline{\text{All9}}$, 333 (1972).
- [3] C. D. Bowman and G. F. Auchampaugh, Phys. Rev. <u>B133</u>, 676 (1964).
- [4] B. S. Ishkhanov et al., Program and Abstracts of 20-th Annual Conf. on Nuclear Spectroscopy and Atomic Structure (in Russian), Part 2, Leningrad, 1970.
- [5] D. L. Hill and L. A. Wheeler, Phys. Rev. <u>89</u>, 1102 (1953).
- [6] E. Hyde, I. Perlman, and G. Seaborg, Nuclear Fission (Russ. transl.), Atomizdat, 1969, p.25
- [7] A. V. Ignatyuk, N. S. Rabotnov, G. N. Smirenkin, A. S. Soldatov, and Yu. M. Tsipenyuk, Zh. Eksp. Teor. Fiz. 61, 1284 (1971) [Sov. Phys.-JETP 34, 684 (1972)].
- [8] A. P. Baerg, R. M. Bartholomew, F. Brown, L. Katz, and S. B. Kowalski, Can. J. Phys. <u>37</u>, 1418 (1959).
- [9] E. J. Winhold and I. Halpern, Phys. Rev. 103, 990 (1956).

ELECTRIC BORN MODEL AND PION FORM FACTOR

V. A. Suleimanov Joint Institute for Nuclear Research Submitted 3 May 1973 ZhETF Pis. Red. <u>17</u>, No. 11, 613 - 616 (5 June 1973)

By choosing the electromagnetic pion form factor $F_\pi(k^2)$ in the form $(1+0.04k^2/m_\rho^2-0.108(k^2/m_\rho^2)^2)/(1-k^2/m_\rho^2)$ for k^2 in the interval from 0.26 to 0.83 (GeV/c)² we obtain a satisfactory description of the experimental data on the electroproduction of π^+ mesons on hydrogen on the basis of the electric Born model.

The experiment performed at DESY [1] on the electroproduction of π^+ mesons on hydrogen is analyzed in the present article on the basis of the electric Born model (EBM) for the purpose of extracting information on the electromagnetic form factor $F_{\pi}(k^2)$ of the π meson.

At very small momentum transfers to the nucleon, the EBM calculations agree well with the results of experiments on high-energy π^{\pm} -meson photoproduction and high-energy ρ^0 -meson production in the reaction $\pi^- + p \to \rho^0 + n$ [1]. In the latter reaction, in the spirit of the known ρ^0 - γ analogy, the ρ^0 meson can be regarded as a virtual isovector photon γ^* of mass m_ρ . We propose to generalize the EBM to include electroproduction of charged pions, namely, for concreteness, to include the reaction $e^- + p \to e^- + \pi^+ + n$ at high energies of the final π^+ n system and very low momentum transfers to the nucleon. In electroproduction in the one-photon approximation (OPA), the 4-momentum k of the virtual photon is space-like ($k^2 \le 0$ in the chosen metric $g_{00} = -g_{11} = -g_{22} = -g_{33} = 1$), and the photon γ^* itself is assumed to be isoverctor (concerning the smallness of the contribution of the isoscalar photon component in the related photoproduction reaction see, e.g., Richter's paper [2]).

The differential cross section of pion electroproduction in the OPA is given by [1]

$$\frac{d^3\sigma}{dW^2dtdk^2} = \frac{\alpha}{8\pi} \frac{1}{E_1^2M^2(-k^2)} \frac{W^2 - M^2}{1 - \epsilon} \left[\frac{d\sigma_T}{dt} + \epsilon \frac{d\sigma_L}{dt} \right], \qquad (1)$$

where ϵ is the polarization parameter of the exchanged photon, defined by

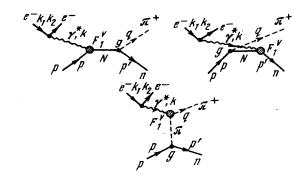


Fig. 1. Born diagrams for the reaction $e^- + p \rightarrow e^- + \pi^+ + n$.

$$\epsilon = \frac{1}{1 + 2 \left[1 + \frac{(E_1 - E_2)^2}{(-k^2)} \operatorname{tg}^2 \frac{\theta}{2} \right]}$$
 (2)

In (1) $d\sigma_T/dt$ and $d\sigma_L/dt$ are the differential cross sections of the reaction $\gamma^* + p \to \pi^+ + n$ for transversely and longitudinally polarized virtual photons; W is the total energy of the final $\pi^+ n$ system, t is the square of the momentum transferred to the nucleon, and M is the nucleon mass; $\alpha = e^2/4\pi = 1/137$ is the fine-structure constant. In (1) and (2), E_1 and E_2 are the energies of the incident and scattered electrons, respectively, and θ is the e-scattering angle in the l.s. of the reaction e- + p \to e- + π^+ + n.

The EBM for the reaction $e^- + p \to e^- + \pi^+ + n$ in the OPA is determined by the Feynman diagrams of Fig. 1 [3, 4]. In the $\pi\pi\gamma \psi$ and $N\bar{N}\gamma \psi$ vertices, use is made of the electromagnetic form factor of the pion $F_\pi(k^2)$ and the electromagnetic Dirac isovector form factor of the nucleon $F_1'(k^2)$, respectively (the contribution of the Pauli form factor is negligibly small at small momentum transfers to the nucleons). k_1 and k_2 denote the 4-momenta of the incident and scattered electrons; $k=k_1-k_2$ is the 4-momentum of the virtual isovector photon $\gamma \psi$; p, p', and q are the 4-momenta of the proton p, the neutron n, and of the π^+ meson, respectively. The Mandelstam variables s and t are defined in the usual manner: $s=(p^++q)^2=(p+k)^2$ and $t=(p-p^+)^2=(k-q)^2$, $s=W^2$ in the c.m.s. of the reaction $\gamma^*+p\to\pi^++n$.

The diagrams of Fig. 1 yield the following summary contribution to the matrix element of the hadron current:

$$< \pi^{+}, \, n \, | \, J_{\mu}^{h} \, |_{p} > = i \sqrt{2} g e \, F_{\pi}(k^{2}) \, \overline{U}_{n}(p') \, \gamma_{5} \left[\frac{2 \, q_{\mu}}{t - \mu^{2}} + \frac{p_{\mu}}{W^{2} - M^{2}} \kappa \right] + \frac{p_{\mu}}{W^{2} - M^{2} + t - \mu^{2} - k^{2}} \kappa + \frac{(\gamma k) \, \gamma_{\mu}}{2(W^{2} - M^{2})} \kappa - \frac{\gamma_{\mu}(\gamma k)}{2[W^{2} - M^{2} + t - \mu^{2} - k^{2}]} \kappa \right] \sigma_{p}(p).$$

$$(3)$$

In (3), $\bar{u}_n(p^1)$ and $u_p(p)$ are the Dirac spinors of the nucleons, $\kappa = \kappa(k^2) = F_1^V(k^2)/F_\pi(k^2)$ with normalization $\kappa(0) = 1$, μ is the pion mass, and g is the NN_π coupling constant, chosen to equal $g^2/4\pi = 14.7$ in the calculations.

The hadron-current matrix element defined by (3) makes the following contributions to the differential cross sections in (1), under the condition W^2 - M^2 >> $\left|t-k^2-\mu^2\right|$:

$$\frac{d\sigma_T}{dt} = \frac{2\pi\alpha}{(W^2 - M^2)^2} \left(\frac{g^2}{4\pi}\right) \frac{F_{\pi}(k^2)^2}{(t - \mu^2)^2} \left\{ t^2 + [t(1 - \kappa) + \mu^2 \kappa]^2 \right\}$$
(4)

and

$$\frac{d\sigma_L}{dt} = -\frac{2\pi\alpha}{(W^2 - M^2)^2} \left(\frac{g^2}{4\pi}\right) \frac{F_{\pi}(k^2)^2}{k^2(t - \mu^2)^2} \left[k^2 + (1 - \kappa)(t - \mu^2)\right]^2, \tag{5}$$

As shown by a comparison of experiments on the photoproduction of π^\pm mesons and the production of ρ^0 mesons in the reaction π^- + p \rightarrow ρ^0 + n with the predictions of the EBM, we can expect expressions (4) and (5) to be valid at $|t| \lesssim 2\mu^2 \simeq 0.04$ (GeV/c)² and W² - M² ≥ 3.5 (GeV/c)². (We note that any difference we obtain between the EBM for $d\sigma_T/dt$ and experiments on π^\pm -meson photoproduction $(d\sigma_L/dt \equiv 0$ in this case) will be ascribed to a more complicated dependence on W than $(W^2-M^2)^{-2}$ in (4), and we shall rais or lower the values of $d\sigma_T/dt$ and $d\sigma_L/dt$ for all k^2 by the same amount as used at $k^2=0$ for the normalization $F_\pi(0)=1$.) In addition, one can easily note

a strong dependence of $d\sigma_L/dt$ on $F_\pi(k^2)$ and a weak dependence on $F^V(k^2)$, owing to the presence of the small factor $(t-\psi^2)$ in front of κ . Thus, with 2 - 5% accuracy, we can put $\kappa(k^2)$ = 1 in the combination of the cross sections $d\sigma_T/dt$ and $d\sigma_L/dt$ in (1), which is then given by

$$\frac{d\sigma_T}{dt} + \epsilon \frac{d\sigma_L}{dt} = \frac{2\pi\alpha}{(W^2 - M^2)^2} \left(\frac{g^2}{4\pi}\right) \frac{F_{\pi}(k^2)^2}{(t - \mu^2)^2} \left[t^2 + \mu^4 + \epsilon t k^2\right]$$
 (6)

Comparison of (6) with the experimental data makes it possible to study directly the pion electromagnetic form factor $F_{\pi}(k^2)$. The cited DESY experiment was performed at \ddot{W} = 2.2 GeV at t = -0.037 (GeV/c)², and the combination $d\sigma_{T\!\!\!\!/}/dt$ + $\epsilon d\sigma_{L}/dt$ was measured at an average value of ϵ equal to 0.75, and at -k equal to 0.18, 0.26, 0.34, 0.48, 0.63, 0.68, and 0.83 (GeV/c)². comparing (6) with the indicated experiment for all k^2 except k^2 = -0.18 (GeV/c)², we have fitted the expression for $(1 - k^2/m_\rho^2) F_\pi(k^2)$ as follows:

$$\left(1 - \frac{k^2}{m_\rho^2}\right) F_\pi(k^2) = 1 + c_1 \frac{k^2}{m_\rho^2} + c_2 \left(\frac{k^2}{m_\rho^2}\right)^2. \tag{7}$$

The least-squares method yields $c_1 = 0.04$ and c_2 = -0.108. χ^2 is then equal to 0.982, corresponding to a 90% confidence level. The solid line in Fig. 2 corresponds to the values $d\sigma_T/dt + \epsilon d\sigma_L/dt$ from (6), taken with (7) with $c_1 = 0.04$ and $c_2 = -0.108$. If the value of $F_{\pi}(k^2)$ at $k^2 = -0.18$ (GeV/c)² is included in the analysis, it becomes impossible to obtain a fit with a reasonable confidence level, since the value $F_{\pi}(k^2 = -0.18) = 0.67$ lies much lower than the values of F_{π} for neighboring k^2 .

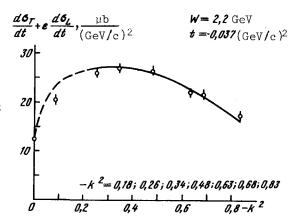


Fig. 2. Solid curve - values of $d\sigma_{m}/dt$ + $[\epsilon(d\sigma_L/dt)]$ obtained from expression (6), taken from (7) with $c_1 = 0.04$ and $c_2 = -0.108$ for k^2 in the interval 0.26 $\leq -k^2 \leq 0.83 \text{ (GeV/c)}^2$. Dashed curve continuation of (7) with the same c1 and c_2 to $k^2 = 0$.

The causes of the small F_{π} at $k^2 = -0.18$ (Ge/c) may be: a) systematic errors in the experiment; b) the presence of additional contributions to the amplitudes of the reaction $\gamma rac{\pi}{4}$ + p $\rightarrow \pi^+$ + n at small k^2 ; c) anomalies in the behavior of the form factors at small k^2 , predicted by a number of workers (see, e.g., [5]). Experiments are therefore necessary with small values of k^2 close to -0.18 (GeV/c)², other conditions being the same. Ascribing this difficulty to the systematic errors of the experiment, we can assume that (7) with the indicated c_1 and c_2 is valid for small k^2 down to k^2 = 0 (the dashed line in Fig. 2 corresponds to a continuation of

The author thanks A. M. Baldin, S. B. Gerasimov, A. B. Govorkov, and G. V. Mitsel'makher for a discussion of the problem considered above.

- [1] C. Dreiver et al., Phys. Lett. <u>35B</u>, 77 (1971).
- [2] B. Richter, Proc. 1967 Internat. Symp. on Electron and Photon Interactions at High Energies, Stanford, Cal.

(7) to $k^2 = 0$) and estimate the pion radius, defined as $r_{\pi} = \sqrt{6F_{\pi}^{*}(0)}$, at 0.65 F.

- [3] C. F. Cho and J. J. Sakurai, Phys. Lett. 30B, 119 (1969).
- [4] A. M. Baldin and V. A. Suleymanov, Phys. Lett. <u>37B</u>,305 (1971).
- [5] L. V. Fil'kov and V. A. Tsarev, ZhETF Pis. Red. 7, 352 (1968) [JETP Lett. 7, 275 (1968)].