shows the distribution with respect to Eex obtained experimentally for the reaction Li®(p, 2p)
at 155 MeV [2]. It is important that the distribution with respect to the excitation energy has
a maximum in the region of the ground state of He3,

If the data on the (p, 2p) reaction are reduced with allowance for the diagram la and a
*background' in the form of the diagram 1b, we obtain a good description of the experimental
data (see Fig. 3; x2 = 23.5 and 15.1 on Figs. 3a and 3b, respectively; we point out for compa-
rison that x2 = 88 and 212, respectively, for the distributions of [1]).

From the data on (p, 2p) at 155 MeV we get for the reduced proton width 62 = 0.39 + 0.06,
and at 185 MeV 62 = 0.27 + 0.06 (at a channel radius 4 F). When account is taken of the diagram
1b, the reduction of the data on the reaction Li®(w~, n7p) yields 62 = 0.5 + 0.2. The indicated
values of 02 thus agree within the limits of errors. The contradicgion between the values of
e%, which were found in [3] to be too large in comparison with the reduced width of the s tran-
sition to the excited level of He®is likewise eliminated, since it is now clear that 62 takes
effectively into account some of the transitions to the state He* + n via a mechanism correspond-
ing to the diagram of Fig. 1b. The effective number of deuterons in Li®, obtained from a de-
scription of the (p, 2p) data with the aid of the diagrams of Fig. 1, is found to be of the
order of 0.4, which agrees with the known data on the (p, pd) reactions (4, 6].

These facts, as well as the significantly improved description of the experimental data by
taking the diagram 1b into account, enable us to hope that the proposed model corresponds to
the real situation. It should then affect also the characteristics of other reactions, for
example Lif(e, ep).
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We derive the self-consistency conditions that must be
satisfied by the mass operator, the density matrix, and the two-
particle interaction in systems with broken symmetry.

We wish to call attention in this article to the fact that for systems with broken symmetry,
which have been diligently studied of late[l], there exist self-consistency conditions that
interrelate definite components of the mass operator I, of the density matrix p, and the two-
particle interaction. They play an important role in the determination of the critical points
and of the characteristics of the collective-excitation spectrum. We shall derive these con-
ditions by using a generalized Ward identity. Using for the ¢ operators the transformation
¥(x) > exp[ir(t)Q(x)]v(x), where Q(¥) is a certain time-independent Hermitian operator and f(t)
is an arbitrary real function of the time, and using standard methcds (see, e.g., [2]1), we getl)

wT(X, D, 6, 0; [igl) +7(x, P, 6, 0;{0gl) = G=1(x,p, e+ —;)Q(x)— 1)

- Ax)6Yx, p, e - -2“1).

1) We have changed over here to a mixed representation. In what follows, we shall use
frequently a symbolic notation and omit the quantum numbers as well as the variables over which
the summation and integration are carried out.
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Here G°! = ¢ - €0 - T is the reciprocal Green's function, while 7[j%] and JPTDQ] are vertices
in which the role of the external field is played by the fourth compdnent of thé "Q-current" j&

and its "divergence" ipg = avj§.

We are interested in those cases when the right-hand side of (1) does not vanish identical-
ly when w -~ 0. This can occur when: 1) the "Q-current" is not conserved (such a situation is
considered in [2]) and 2) the "Q-current" is conserved but the symmetry of the considered state
is broken, i.e., the mass operator is characterized by a nonzero macroscopic parameter that is
not invariant relative to the given symmetry transformation, whereas the energy of the state
is not altered by such a transformation. Such macroscopic parameters are the moment of inertia
of the deformed drop (I does not commute with the angular-momentum operator L), the isospin
of the nucleus at N # Z (I does not commute with the isospin operator ?), the coordinate of the
center of mass (CM) of the final system, etc. In view of the indicated degeneracy, the standard
methods of quantum theory cannot be applied directly, and it is necessary to 1ift the degeneracy
somehow, for example by applying to the system an external field that does not commute with the
given symmetry transformation [3]. If the state under consideration is stable, then a very weak
field V(¥) suffices to 1ift the degeneracy and to "freeze" the degree of freedom corresponding
to this parameter (if the changes of the external conditions bring the system close to the cri-
tical point, where it ceases to be stable, then the field necessary to "maintain" a certain
fixed value of the macroscopic parameter increases sharply). Thus, to exclude the motion of
the CM of a spherical 1liquid drop along the x axis, it suffices to place it in a square well
V(x) of depth Vo such as to make the amplitude of the zero-point CM oscillations small compared
with the distance between particles; it is only under this condition that it makes sense to
measure the density. A simple estimate shows that the depth of the well should satisfy in this
case the condition Vg >> gOA—“ 3, where e¢g is the characteristic energy, and A is the number of
particles in the system. When the drop turns into vapor, the external field required to "secure"
the CM is already Vo ™ ggp.

Application of an external field V(X) gives rise to a "Q-current" divergence Dg v [q, V1.
Letting the frequency w tend to zero, we obtain from (1)

T(%,p,¢;IDg1) = G71(x,p,¢) Q(x) - Q(x)G-1(x,p,¢)=[G-1Q]

It follows therefore that 7 (w = 0; [DQ]) does not depend on Vg. This means that the vertex
T (ws [DQ]) has a pole near zero, i.e., 7 (w; [DQ]) = ~wg[6™!, Q]/(w - wy) (the position of the
pole wg is proportional to the field Vg). As seen from (1), the poles QV[ja] and G’[DQ] coin-
cide, since there are no singularities at all in the right-hand side when w is small. There-
fore as w + wy we have
6-1, Q
TLigl - e a . (2)

W - W
o

The vertex 7’[35] at the pole w = wp satisfies the standard homogeneous equation
T =1676, (3)

where U is an irreducible block in the particle-hole channel, It follows from the foregoing
that we are able to choose the external field V; small enough to make the frequency wg small in
comparison with the frequencies w; of the single-particle transitions in the right-hand side of
(3). Neglecting terms of order wg/w;, we obtain from (2) and (3) the self-consistency condition

Z(X’ p,E)Q(X)— Q(X)z(x, P, 6) =

dx"dpde’ . ) (1)
= J——————U(x,p, X, P  NG(x]p] eNQ(Xx) - Qx")G(x] p; e ]
(20)4

We now consider concrete examples. For systems with broken symmetry with respect to shear
(liquid drops, crystals), the condition (4) takes the form

33(x, p, ) dx"dp de’ .,
Cop ) IR g e xRN
dx (2m)4i ax
This relation can be normalized by the usual procedure of the theory of Fermi liquids, intro-
ducing the local amplitude TW of the quasiparticle interaction on the Fermi surface:

9G(x", p’ ¢ (5)
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" -1
9% e a9 (6)
ax ax

Here A is the integral of the pole parts G4 of the two Green's functions with respect to €3
Ga(FE, B,e) = a(F)[e-1UF, P)]7!, where HY = P2/2m* + U, We emphasize that (6) contains the
mass operator I, and not the Hamiltonian of the quasiparticles H? (they coincide only when m¥
=m and a = 1, where m¥ is the effective mass and a is a renormalization factor). A decisive
role is played in the nucleus by the zeroth harmonic of T¥, i.e., T'®(F, ¥') = ro(x)s(X - 2').

In the particular case when m¥ = m and a = const, we obtain from (6) for spherical nuclei
3U(x)/9x = F(x)[8p{x)/8x], where F{x) = a?r(x) and p(x) is the quasiparticle density. A similar
relation in somewhat different form was obtained in [L].

The situation is somewhat different in systems with pairing, Owing to the appearance of a
Bose condensate of the bound paires, Eq. (3) is no longer valid and a system of more complicated
equations is necessary. It is nevertheless easy to show that in this case, too, the self-con-
sistency condition for a system with violated translational invariance has a form similar to (5):

9 96
— - U— (1)
Jx Jx

but here the Green's function Gy takes pairing into account, and I does not include the trans-
formation of a particle into a hole and a condensate pair. (Inasmuch as the gap A is determined
from the homogeneous equation, no new conditions are obtained for it.)

For systems with broken rotational symmetry, the self-consistency equation (4) takes the
form (in the coordinate representation):

d
<XXi+yX_>z(x1y,€)=
ox ay

(8)
dxdy “de’ d
= f y o€ Ux, Vye; X/ yre) [x7 x + ¥'x — G(X] y5 €.
27i ax’ ay”’

In the same approximation as above, retaining only the zeroth harmonic, we obtain for an axially-
symmetrical deformed drop the simple relation 3U(r,6)/96 = F(r, 6)[ap(r, 8)/36].

We emphasize that for anisotropic media and deformed systems the conditions (8) and (5)
should be satisfied simultaneously.

Equation (4) can be generalized to include the case of multicomponent systems (ionic crys-
tals, atoms, etc.); then U, G, and % become matrices.

In some cases, spontaneous symmetry breaking can appear simultaneously relative to discrete
and continuous transformation groups. Thus, Migdal [5] has shown that particle-hole pairing
{pion condensate) ocgurs ig4nuclear matter under ordinary circumstances. As a result, a term
of the form Zsz[cos(kof)](oL) appears in the mass operator. Thus, I ceases to commute not only
with the shift and rotation operator, but also with the spin operators o, although the initial
Lagrangian is assumed to be invariant to these operations. It is then necessary to satisfy si-
multaneously three self-consistency conditions, two of which are similar to (5) and (8), and the
third takes the form

(3¢ 21 - ule,3) (9)

(a»gimilar condition is obtained also for the "Lane" part of the self-consistent potential
Zp1T in a mucleus at N # 2 [6]).

We note that the presence of several self-consistency conditions means that there exist in
the system several types of collective excitations, the characteristics of which can be deter-
mined with the aid of the obtained relations. This problem will be considered in a following
paper.
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We wish to call attention to the profound connection between two statistical hadron models,
the Pomeranchuk model [1] and the Hagedorn-Frautschi bootstrap model [2, 3]. In recent papers,
Feinberg [4] and Sisakyan, Feinberg, and Chernavskii [5] explained successfully a large number
of experimental facts within the framework of the Pomeranchuk model. Similar results are ob-
tained also in the statistical bootsrap model [2, 3]. The key fact here is that the temperature
in both models is independent of the system energy. However, the reasons why such a temperature
appears in the two models seem to be quite different: in the Pomeranchuk model the cause is the
proportionality of the volume of the system in which the thermodynamic equilibrium is establish-
ed (the Pomeranchuk fireball) to the number n of secondary particles, and in the bootstrap model
the cause is the presence of a hadron state density p(m) that increases with increasing mass.
Moreover, one of the main postulates of the bootstrap model is that the volume of the heavy
hadrons (the Hagedorn fireballs) is independent of their mass. All this can give the impression
that there is no direct connection between these models. We shall show, however, that in the
statistical bootstrap the role of the Pomeranchuk model is played not by the volume of the
hadron itself, but by the volume of the system of stable particles (arbitrarily, pions) into
which it decays. In accordance with the Pomeranchuk postulate, this volume is proportional to
the number of pions, making it possible immediately to establish a correspondence between the
different fireball definitions used in the two models.

We start with a relativistically-invariant form of the statistical bootstrap equation,
corresponding to the so-called bootstrap condition

oo v k-1 1 k
p(m) = d(m-m_)+ Z [— — I fdm?p(m, ) x
k=2\8#3 k! i=1

(1)
Cl3p. k k

L &(m - 2 poi)85( 2 p; )
j=1 =1

X fz

oi’
where m, is the pion mass, V is the hadron volume, d; describes the pion degeneracy, and p(m)
is the hadron density. Using the method of [6, T], we can cobtain an exact solution of (1):

p(m):dlﬁ(m—mo)+ kz dka(m—kmo)ﬂf‘,,’; mo""mo) » (2)
=2
where v k=1
k . Yk -
and
(k) k k k
Fimi myaeamy) =L 1995 00py;)8(p} —mZ)8(m= 2 ;)8 T p)) (3)

i=1
is the phase volume of k pions connected with a hadron of mass m.
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