We can offer the following interpretation of (1) and (2). Divide both halves of (1) by
po(m). Then the integrals in the right-heand side of (1) specify the average partisl widths of
resonances of mass m in units in which the average width of resonances having this mass is
equal to unity. The fact that the same function p(m) is contained in the left and right sides
of (1) is a reflection of the following bootstrap condition: the resonances into which the
initial resonance decays decay in turn in the very same manner into still lighter hadrons. On
the other hand, relation (2) reflects the fact that ultimately all the heavy hadrons should
decay into stable pions. It should be assumed here that the n-term in (2) has a dyneamic nature
and is proportional to the probability of observing n pions at the end of such a decay:

d7(")(m;m yoeam, ) =

n-1 1 n 3 n n
WA fdm? 8(m,~m ) [=— 8(m-  p,, 612 ly) ()
8 3 n! ,=1 2p; j=1 j=1 ’
~ [d nty1/n=D
V:( ) "3 Vn. (5)
m

[+]

We recall now that the average multiplicity {(n) of the pions in the statistical bootstrap
model is proportional to the hadron mass m [3]. Therefore Poerr Will not depend on m in the
dominating configurations, and expression (4) can be interpreted as the density of the number of
states of a microcanonical ensemble of n free identical particles with volume V mo/po )
in their ¢.m.s. Thus, just as in the Pomeranchuk model, the volume of the pion §£s is propo?-
tional here to the number of particles n. All the thermodynamic characteristics of the cor-
responding systems therefore coincide in the two models.

It must be borne in mond, however, that in the statistical bootstrap model, owing to
additional dynamic assumptions, there is more information than in the Pomeranchuk model. Thus,
it is possible to prove in it the dominant role of the decay of a hadron into a pion and another
hadron, and the exponential growth of the hadron density p(m) [2, 3]. The predictions of the
model coincide only when it comes to deseribing the decay products at the end of the complete
process, and the intermediate stages are not described concretely in sny manner in the model [1].

We note in conclusion that, as shown in [8], the statistical approach to dual models leads
to results that are close to those obtained within the framework of the statistical bootstrap,
so that one cannot exclude the possibility of regarding them as a concrete dynamic realization
of either the Hagedorn-Frautschi or the Pomeranchuk model.
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The vertex functions and the polarization operator in (l-e)-
dimensional field theory with interaction ¢“ are calculated for
small ¢ by direct summation of perturbation-theory diagrams. The
derived expressions are valid both where perturbation theory is
velid and in the scaling region.

As is well known (1], The Landau theory of phase transitions holds in four-dimensional
space with logarithmic accuracy. It is therefore natural to expect that in (4 - e)-dimensional
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space with € << 1 the deviation from this theory would be small. Wilson and Fisher [2] have
proposed to use € as a small parameter for the calculation of the critical exponents. Wilson
[3], using renormalization-group ideas, calculated the exponents accurate to ¢ and obtained an
expression for the four-point diagram in the scaling region. Tsuneto and Abrahams [4] did the

same by using the Word identity. The field-theory equations, however, were not solved in these
papers.

On the other hand, Larkin and Kimel'nitskii [1] have shown that in four-dimensional field
theory with interaction ¢“ there is realized a logarithmic situation and the main contribution
to the vertex functions is made by the so-called parquet diagrams. Naturally, in (4 - ¢)-
dimensional theory with € << 1 the main contribution should also be made by these diagrams,
although the logarithm is replaced by a power-law function with a small exponent e. The reason
is that at small ¢ a power-law function, like the logarithm, varies little and is large.

In the present paper, by summing parquet diagrams, we obtain in (4 - e)-dimensional space
explicit expressions for the vertex functions and the polarization operator in the entire range
of momentum variation, and match the results with those of perturbation theory. We show, in
particular, that in the scaling region the coefficient preceding the corresponding degree of
the momentum in a vertex with two ends and one corner and in the polarization operator is a
power-law function of ¢ with non-integer exponent. The expression for the four-point disgram
goes over in the scaling region into the results of [3, u4].

We consider the theory of an n-component field ¢, with interaction Za ¢g¢%. The zero-
order Green's function is equal to Ggo(k) = (ry + k2)!, and the unrenormalized vertex is

qugdaBGMv, vhere A is the cutoff momentum and ug 1is a dimensionless parameter, ugy << 1.

We consider the vertex part I'(qy, q2, q3) in the case when all the momenta are of the

same order. Then I' is a function of one argument, and by summing the parquet diagrams [1, 5]
we obtain for it the following equation:

Fa,BﬂV(q):F( q)(BaBBuV-F 80M55V+§GVBBH ),
A ddp (l)
F(q) = v A -(n+8)[ G¥p)T2(p),
q (27)

where d is the dimensionality of space. Assuming that the exponent n vanishes, we put

dip
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G(p) = p2, —>\7(dp3’“dp,

K, = 270@-V =421 (d/2)]-!

we meke the change of variable y = (A/q)s, differentiate with respect to y, and solve the
resultant differential equation. We obtain

r(q)=u°/\€r“‘,

Pl n+87(d"o[(£>€—1}- (2)

€ q

The equations for the vertex F, (q) represented by diagrams with two ends and one corner
and for the polarization operator H(qg teke the form [1]

E A dd
“B (= Papp- £ (2m)9 Fuv (PYCXR) T, o gle)
(3)
A dd
I = 2
() £ (ZW)dFaB(P)FaB(P’G (p) -
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Putting Fyg = Féyg and solving (3) in the same manner as (1), we obtain

_ . —(n+2 i
F = ¢4-(n )/(n+8),

o " ! [ $G4-n)/(n+8) _ 1], (&)
4_n que

From (2) and (4) we obtain at q << A, assuming Kg = Kg

87726 qf - r (n+2)/(n+8)
, u, A

u n 1 r -(4~-n)/(n+8)
4-n  u_A° |u Af
o [}

The first formula in {5) was obtained earlier in [3, 4]. It is sgen gr?m é?) that the
co?gfis} ntg preceding the powers of q in F and 1 are proportional to ¢ n+2)/(n+8) "gpg
e=(4-n)/{0+8)" 403 cannot be expanded in powers of e.

r

il

»

n+8
(5)

To determine the exponent y we use the Ward identity [1]:

dr

— = F(0), r=6"10). (6)
dr0

Since q goes over into /T as q =+ 0, we have

(n +2)

rﬂe(n+2)/<"+8)("°"" Y7, y=1+cm

ocC

roc is the criteel value of ry. The expression for was derived earlier in [3, 4]. The
specific heat ¢ is proportional to N(0), and therefore

4- n

C'Vf_(4 —ny(n+8)(r° —roc) 2(n+8) . (8)
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NOTE

A footnote was left out in connection with the title of the article by G. A. Askaryan,
V. A. Namion, and M. S. Rabinovich, Vol. 17, No. 10, p. 42L4. The footnote reads: "This
article was reported by the authors at the Physics Institute of the USSR Academy of Sciences
in July 1972, at which time copies of it were distributed.”
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