At T < Ey, observation of this band should make it possible to determine Ey, and owing to the
high values of fb such measurements are possible at relatively low exciton concentrations. A
comparison with the luminescence spectra should make it possible to separate reliably the
biexciton spectrum.

3. There is no analogous effect for indirect transitions. In crystals with indirect tran-
sitions, however, there can exist additional extrems corresponding to direct transitions, as is
the case with Ge. Photoproduction of a direct exciton near a thermalized indirect one is then
possible, and the two can form a biexciton. The oscillator strength of such a transition will
also be gigantic and described by a formula that differs only slightly from (2) (mainly because
of the difference between the exciton masses).

The situation should be particularly interesting if a confirmation is found for the poly-
exciton idea [2], according to which the binding energy in multivalley crystals increases
progressively with increasing the number N of the excitons contained in the crystal. In this
case the width of the absorption band corresponding to the "completion" of the polyexciton on
account of the direct exciton, should be small (NN'I) owing to the large mass of the polyexciton.

Thus, in erystals with indirect transitions one can expect to observe aggregates that do
not appear under quasiequilibrium conditions. Since drops cannot generate the structural spec~
tra considered here, these spectra can be useful for the study of the composition of a quasi-
equilibrium phase.

L4, We note in conclusion that in addition to the absorption connected with transitions
to a discrete biexciton level, there exists an absorption corresponding to transitions to
the continuous spectrum of a system of two excitons. It also contains a large factor (k3v)~!
>> 1, and furthermore diverges like [w ~ (E, - R)]=2 near the frequency corresponding to the
production of a free exciton (on both sides of this frequency). Although the divergence is cut
off by the exciton damping and by the polariton effect, its intensity is nevertheless large.
Equally large is the probability of the inverse process, collision emission.
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We consider in this article a new approach to the four-nucleon problem, based on the use
of multiparticle integral equations. This approach is free of the shortcomings of the usual
variational methods [1] and is equally applicable to the calculation of discrete and continuous
spectra. In particular, it is easy to obtain in this method practically exact results for
states of the cluster type, for which the method of hyperspherical functions [2] results in
worse convergence and needs to be modified [3]. We present below the first calculations of
this kind for 0% states of an o particle with allowance for the spin dependence of the nucleon-
nucleon interaction. It must be emphasized that allowance for spin effects makes the solution
method much more complicated in comparison with the earlier "spinless" calculations of few-
nucleon systems. On the other hand, if realistic nucleon-nucleon potentials are used there are
no grounds whatever for neglecting forces that depend on the spin orientations. We have con-
sidered the variant of integral equations of the Yakubovskii type [4], which take the form of
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two-dimensional integral equations if a separable representation is used for the two-particle

T matrix [5, 6]. One of the methods of solving equations of this kind is the method of separable
approximation of the amplitudes for the subsystems 3¥1 and 2¥2, in terms of which the kernels
of the four-particle equations are expressed.

The separable approximation, which makes it possible to reduce the equations to a one-
dimensional form, can be effected by many means. We use here a method based on an expansion of
the Hilbert-Schmidt type. We shall show that this method makes it possible to obtain even in
the first approximation, with an accuracy on the order of several per cent, the binding energy
of the ground state. Another important advantage of the method is that it can greatly decrease
the number of equations to be solved. The Hilbert-Schmidt method, which is well known as ap-
plied to the two~particle amplitude [T], was used successfully to solve three-particle equations
[8]. A generalization of the method for three-particle amplitudes was obtained in [9]; similar
results are obtained also for the 2¥2 amplitudes.

To illustrate the convergence of the method, we consider first the simplest case of iden-
tical bosons [10] interacting via a triplet separable potential of the Yamaguchi type [11]. We
use the notation of [6, 9], the parameters of the potentials are given in [9], and the constant
A/2m, where m is the nucleon mass, is equal to 20.73622 MeV-FZ2.

The fogm £ac§or in a system of four identical particles is expressed in terms of the two
functions A(k, p, q|z) and B(k, p, q|z).For a separable interaction, we can separate the depend-
ence on k in the functions A and B:

- 9kle (p.ql z)
A (k, p,q| z) = /ﬂ :

(1)

B(k, p, ql2) = V{—~

For the state LP = O+, the function b(p, q{z) depends only on the moduli of the vectors p and

g. We neglect the contribution of the three-particle configurations with & # 0, in which case
the function a(p, q[z) is likewise independent of the angle variables. We introduce in addition
the eigenfunctions wy(p|z) [vm(plz)] and the eigenvalues np(z) [£,(z)] for the 3¥1 and 2%2 ampli-
tudes. TFor the 3*1 subsystems, these quantities are given by formulas (8, 10) of [9], and the
quantities vy and gy are analogously defined. We expand the form factors a and b in series in
the eigenfunctions wy and vp:

2 2
alp, qlz) = Ewm<plz - ?n;i)am(ql z), b(p, qlz) = zvm<p |z- z_i/km(qu;, (2)
m m

Using the fact that w, and vy are orthonormalized, we obtain a system of equations for the fun-
ctions ay and bm. In accordance with the general structure of the Yakubovskii equations, this
system can be written for a, only, and the functions by can be expressed in terms of gy by means
of an integral operator. The homogeneous system with eigenvalue u(z) is given by!

q?2
a (qlz) = u~Yz) d),,,(z——z; -} K, . q’lz)a,,(q'lz)q’qu'}; (3)
where
K 1z) = C - S (D .(q.9 72" q”yo
mnl(d 971z) = C_ (g, 97| 2) + 2 D (a9 |z k(_Zm Lk ()

x (97,9 |z)q’"2dq"",

1)

The discrete levels z; are determined from the condition u;(z;) = 1.
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® (2) = 0, (2)/ [L=n (21, W (2) =& (2) /[ 1=g, (2], (5)

. 17 39! q° q°?
Cmn( 9,9 12) = E(é—;/—‘j)—ll wrn<Q1} z - ‘2_—"1>wn(Q2§Z - 5;) X (6)
X d—l[z—zi—(qZJr Q%)}dx

; 1 3 31 q2 q'2
Pmnl(@a7t2) = 7(/?)!1 o (512 - ‘27;)%(52'2 ") (7

1 2
xd-tlz = = (g2+52)] dx .
2m

The multiplicity of the system (3) is equal to the number N, of the three-particle subsystem
eigenvalues that are taken into account, while the number N, determines the accuracy with which
the kernel is calculated. Table I lists the calculated energies of the ground (z;) and excited
(z3) states for different values of N, and Ng.

Table I. Of states of four identical bosons.

NT] NC Zl’ MeV z,, Vﬁl\EeV
1 1 -87.67 -

2 2 -90.01 - 25.98
3 3 - -90.09 - 26,48
4 4 - 90,10 - 26.64

We note that even the first approximation N, = NE = 1 yields the binding energy of the
ground state with accuracy 3%, while the approximation N. = N; = 2 gives the binding energy of
the excited state with the same accuracy. Our final result, z; = -90.10 MeV and z, = -26.6k
MeV, should be compared with the reuslts of [10], z; = -8L4.66 MeV and z, = -2L.87 MeV (we re-
call that the Bateman method with two separable terms, used in [10], also overestimates the
first two-particle threshold, giving zg = -2L4.55 MeV instead of zy = -25.56 MeV). We see that
the results agree qualitatively, but the Hilbert-Schmidt method is more accurate.

We now take into account the spin and isospin dependence of the nucleon-nucleon forces.
We chose the triplet (i = 0) and singlet (i = 1) interaction in the form of a separable s-wave
Yamaguchi potential. The functions A in (1) are characterized, besides the total spin S and iso-
spin T, also by the values of the spin ¢ and isospin t of the separated triad of particles,
as well as by the isospin 1 of the separated pair of particles. The functions B are likewise
characterized, besides S and T, by the isospin values 1 and j of two particle pairs. The gene-
ral results for different values of S and T were obained in [6]. We consider below the state
8 =T=0. In this case 0 = t = 1/2, and the indices i and j of the function B take on identi-~
cal values i = j = 0 and 1 = j = 1. We thus have two functions A:(k, p, q|z) and two functions
B;(k, p, a]jz). Putting A; = v1;/2m(g;a;/d;) and B; = VAi/2m(gby/d3), we write down an expan-
sion of type (2) in the form

2

a,(p,qlz) = Zwi,,,(PIz - —q)am(qIZ),
m 2m
g2 (8)
b, (p, qlz) = zv,-m(p|z- ~—)b,~,,,(qlz),
m 2m

where wop and vy, are a pair of three-yarticle eigenfunction with quantum numbers ¢ = 1 = 1/2,
corresponding to the eigenvaluesnngl/2 172 = n [see [9], formulas (18, 19)], and v? [vp] are

m
the eigenfunctions for the 2¥2 channel, corresponding to the eigenvalues Eom [Elm
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Table 2. Ot states of o particle,

N7(’+) N(ﬂ_) Ne z,, MeV z,, MeV
1 0 1 - 44.29 -~

1 ] 4 -~ 44,54 - 11,06
2 1 4 - 45.69 -11.39
3 2 4 - 45.73 -11.63
4 3 4 - 45.73 -11.68

The system of equations for the functions ap again takes the form (3), where

Knn(% a'l2) = 210G, (q, 4" 12) + 2 (D], (q, g""]2] x

q’fz (9)
* Y (" 5 )Pk (97 4771 2) 97 2de””

and the quantities W%, C%n’ and D%n are obtained from formulas (5) - (7) in terms of Eim Vig?
a?d Ve T sgectively. The results of the calculations are given in Table 2, where the symbols
Nn+) an?)Nn‘ denote the numbers of the positive and negative eigenvalues for the three-particle
problem*/.

Our fipal result is z; = -45,73 MeV and Zy = -11.69 MeV. Subtracting the threshold energy
{(zg = -11.03 MeV) we obtain E} = z; - zp = =34.70 MeV and Ey = z, - zg = -0.66 MeV. The ex-
perimental values, reckoned from the binding energy of tritium (-8.484 MeV), are E; = -19.840
MeV and E, = +0.4 MeV [12]. We see thus that the Yamaguchi potential overbinds the ground state
of a four-particle system much more strongly than that of the three-particle state (the over-
binding for the triton is 2.55 MeV). It is quite remarkable, however, that in our calculations,
both for identical bosons and for spin-~-dependent forces, the excited 0% state lies near the pT
threshold, as is observed in experiment (the ground states for these cases differ by almost 45
MeV!). This circumstance calls for an additional theoretical study.

We note in conclusion that our exact results are close to those obtained in the cluster
approximation 4 = 3%¥1 [13] in equations of the Omnes type [13]. In this approximation we ob~
tained z;(Omnes) = - 39.6 MeV (the excited 0% state is located in this case near the pT thresh-
0ld). This figure differs from the exact value by only 10%. A sinilar approximation in the
Yakubovskii equations yields z;(Yakubovskii) = -26.24 MeV. The excited 0% level does not appear
in this case. We see thus that the contribution of the 3¥1 channel in the Omnes and Yakubovskii
equations turns out to be quite different. The latter is not surprising, since the subclasses
of the perturbation-theory diagrams summed in this cluster approximation in the Omnes and Yaku-
bovskii equations are also quite different.

The authors thank Yu. A. Simonov and K. A. Ter-Martirosyan for interest in the work and
I. S. Shapiro for useful remarks.

[11 P. E. Argan, G. C. Mantovani, P. Marazzini, et al., Nuovo Cimento Suppl. 3, 245 (1965).
Proc. 9-th Summer Meeting on Nucl. Phys., Hercegnovi, July 196k. B. H. Brandsen, Nuclear
Forces and the Few-Nucleon Problem, Vol. II, Pergamon, 1960. Proc. on Clustering Pheno-
mena in Nuclei, Bochum, Germany, 1969.

{21 A. M. Badalyan, E. S. Gal'pern, V. N. Lyakhovitskii, et al., Yad. Fiz. 6, 473 (1967)

[Sov. J. Nuc. Phys. 6, 345 (1968)].

A. I. Baz' and M. V. Zhukov, ibid. 16, 958 (1972) [16, No. 5 (1973)].

0. A. Yakubovskii, Yad. Fiz. 5, 1312 (1967) [Sov. J. Nuc. Phys. 5, 937 (1967)]. L. D.

Faddeev, Three-Body Problem in Nuclear and Particle Physics, J.-S. C. McKee and P. M.

Rolph, eds., North Holland, 1970, p. 15L.

——
=W
(AT

1)We recall that the doublet three-particle amplitudes are not positive-definite and have
negative eigenvalues that are larger in absolute magnitude.

L82



[5] V. F. Kharchenko and V. E. Kuzmichev, Nucl. Phys. A183, 106 (1972). EA196 636 (1972).
[6] I % Nigﬁdetskll and I. L. Grach, Yad, Fiz, 18, No, 2 (1973) [Sov, J. Nuc. Phys. 18, No.
197

[7] s Weinberg, Phys. Rev. 131, 440 (1963). L. D. Faddeev, Proc. Fifth Internat. Conf. on
the Physics of Electronic and Atomic Collisions, S. H. Branscomb, ed. (boulder, Colorado,
%962)3)p. 145. TI. M. Narodetskii, Yad. Fiz. 9, 1086 (1969) [Sov, J. Nue. Phys. 9, 636
1969

[8] A. G. Sitenko and V. F. Kharchenko, Usp. Fiz. Nauk 103, 469 (1971) [Sov, Phys.-Usp. 1k,
125 (1971)1].

(91 I. M. Narodetskii, E. S. Gal'pern, and V. N. Lyakhovitskii, Yad. Fiz. 16, 70T (1972)
5SOV.)i. Nuc. Phys. 16, 395 (1973)]. ZhETF Pis. Red. 15, 5kl (1972) [JETP Lett. 15, 385
1972)].

[10] V. F. Kharchenko and V. E. Kuzmichev, Phys. Lett. 42B, 328 (1972).

[11) Y. Yamaguchi, Phys. Rev. 95, 1628 (1954).

[12] W. Meyerhof and T. Tombrello, Nucl. Phys. A109, 1 (1968).

[13] I. M. Narodetskii, V. N. Lyakhovitskii, and E. S. Gal'pern, ZhETF Pis. Red. 16, U431 (1974)
[JETP Lett 16, 306 (1972)]. I. M. Narodetskii, Yad. Fiz. 18, 67 (1973) [Sov. J. Nuc.
Phys. 18, No. 1 (1974)].

[14] R. Omnes, Phys. Rev. B165, 1265 (1968). I. M. Narodetskii and O. A. Yakubovskii, Yad.
Fiz. 1b, 315 (1971) [Sov. J. Nuc. Phys. 1L, 178 (1972)].

USE OF SECOND SOUND TO INVESTIGATE THE INHOMOGENEOUS DENSITY DISTRIBUTION OF THE SUPERFLUID
PART OF HELIUM IT NEAR THE A POINT

V. L. Ginzburg and A. A. Sobyanin

P. N. Lebedev Physics Institute, USSR Academy of Sciences
Submitted 25 May 1973

ZhETF Pis. Red. 17, No. 12, 698 - T02 (20 June 1973)

One can hope to investigate the density distribution of
the superfluid part of helium IT near the A point by "sounding"
the helium (in particular, the boundary between helium I and
helium II in a gravitational or electric field) by means of
second-sound waves.

1. Interest in the study of the properties of He-II near the A point has strongly in-
creased of late. There is no doubt that in many problems it is necessary to take into account
the spatial inhomogeneity of the density of the superfluid part of the liquid, pg = m|W|2, with
the ordering parameter ¥ determined from the corresponding equations (see [1 - 5] and the lite-
rature cited in [h 5]). In the absence of an electric or gravitational external field, the
characteristic dimension of the inhomogeneity of pg is £(T) = #/V2mA(T), where A(T) is the co-
efficient of |[¥|% in the expan51on of the thermodynamlc potential Q(u, T, |¥[2) in terms of
|¥[2. The length £(T) = gqu(AT)=2/3 n 3x107% cm even at AT = Ty - T ~ 107 "6 og (here and through-
out we use the phenomenological-expansion parameters calculated in [2]; see also [5]). The
experimental study of the inhomogeneity of pg is therefore far from being a simple matter, even
though it can be performed by a number of methods [6 - 9]. The measurement possibilities become
greater if the He is in a gravitational [5, 10] or in an electric [5] field. The point is that
in an external field with a slowly varying potential U(x) the boundary between the normal and
the superfluid phases of the helium is smeared out, and the characteristic length &, which de-
termines the variation of pg in the transition layer, is given by (see [5] for details)

<| dT, I)-z/s
Tdx | '

where dT)/du is the slope of the A curve, and the derivative dU/dx is taken on a line on which
pg vanishes of the gradlent term is dlsregarded in the expansion of Q. In a gravitational field
|av/ax| = g and ¢ £3f°( latTy/dulg)- 2/5 = 6,8x10~3 em. In the electric field of a charge?
filament, |aV/dx|%= (2AT/[dTA/du])3/2 aE2(R)R2)~1/2ana ag = £3/5(T)(]aT)/du|aE2(R)R2/8AT) /S,
Here R is the radius of the filament, E(R) is the field 1nten51ty on the surface of the f11a~
ment, and o = 3,1x10~2 cm3/g is the polarizability per unit mass of helium. Hence & ™ 3x10~2

em at R~ 1 em, AT ~ 1078 °K, and E(R) "~ Eppreakdown ~ 2x10%® V/em. Under such conditions one can
hope to investigate the dependence of ps(T, r) on the coordinate P by sounding the distribution
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