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The case of sufficiently strong fields, when the electron
surface density is not small, is considered. It is shown that
there exists a critical density, starting with which the homo-
geneous system is unstable. A method of observing the Wigner
crystal structure is indicated.

It was shown in [1, 2] that localized electrons with approximate binding energy 1073 ev
(v10°K) can exist on the surface of helium. The appearance of bound states is due to the large
barrier (v1 eV) to the passage of the electron into the helium and to the action of the image
forces, which are small and of the order of the difference e; - ey = 0.06 between the dielectric
constants in the liquid and gas phases. This question was investigated experimentally in [3-5].
The results of [3 - 5] indicate that stable localization of the electrons at approximately 1°K
can be obtained by superimposing an additional ''clamping'" electric field. It was noted in [3]
that, owing to the Coulomb character of the spectrum, the electrons are localized on the surface
in the absence of a field only at very low temperatures.

We consider here the case of sufficiently strong fields (103 - 104 V/cm), when the surface
density of the electrons is not small, It will be show that there exists a critical density,
starting with which the homogeneous system is unstable. A periodic superstructure is then pro-
duced on the surface, with dimensions on the order of the capillary constant, In connection
with the experiments of [5], we indicate a method of observing the Wigner crystal structure [6],
the possible existence of which in the investigated problem was first pointed out in [7].

The experimental situation we have in mind coincides with that of [3] and is shown in the
figure, The surface of the helium is at z = 0, and the electrons are clamped to it by a poten-
tial difference V applied to the metallic plate A.

If there is no potential difference, then the Coulomb repulsion between the electrons pre-
vails over the image forces at z > (e; - e;)rg. Therefore when rg < zy/(ey - €;), where rg is
the mean distance between electrons and zy ~ 107® cm is the characteristic dimensions of the lo-
calized state [1, 2] the electrons become delocalized in the absence of a field. This corres-
ponds exactly to densities n_. ~ 108 - 10% cm™2, At lower densities and at finite temperatures
the electrons "become ionized? and move away from the surface layer because of the infinite num-
ber of levels in the potential well of the image forces [3].

- In the clamping field, the transverse-motion energy e; and the characteristic dimension
z of the state are estimated in the usual manner:
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where ap = 0.5x107% cm is the Bohr radius and E = 4dmeng = 4wer;2. It is seen from this estimate
that z is small in comparison with the mean distance rg between electrons. The electrons can
therefore be regarded as lying in the plane. At low temperatures it can be assumed that the
electrons form a "Wigner crystal' [6, 7]; since the kinetic energy is low, the ground state
takes the form of a lattice of localized electrons. The kinetic energy is taken into account
as a perturbation and contributes to the energy of the zero-point oscillations. The oscillator
energy for a planar hexagonal lattice, calculated in [7), is equal to
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The characteristic oscillation frequency %& = 4.6 Ry(ao/rs)3/2
corresponds to approximately 1°K already at rg v 0.5%10"% cm. The usual
criteria with respect to '"melting" of the lattice demonstrate by the
same token the possibility of observing '"Wigner crystallization" at the
— A usual helium temperatures.

A Measurement [5] of the cyclotron-resonance frequency at T = 1.2°K
has shown that the latter depends:only on the z-component of the magnetic
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field. By the same token, this demonstrates the two-dimensional character of the electron motion.
We note that measurements of the field dependence of the resonance frequency can provide an
unambiguous anser to the question whether the electrons makg up a lattice. Indeed, the kinetic
energy of the electrons in the magnetic field is given by H*(p - eA)2/2m. If Hll z and Ay = -Hx,
we get from this and from (2) that the resonant frequency for absorption of electromagnetic ra-
diation by the oscillator takes the form wg = vw* + w&, where w, is the usual cyclotron-resonance
frequency. At & >> w. the dependence on the field is quadratic. In the experiments of [5],
we v & v 1°K. There are no plots of the resonance frequency against the field in [5]. The line
width may be due also to the fact that the electron oscillations propagate over the lattice. The
last question will be considered separately.

We now discuss the stability of the electron system on the surface of the helium. It is
obvious that the Coulomb repulsion of the electrons tends to bend the surface. This is prevented
by the surface tension of the helium.

The distribution of the electric field E is determined by the potential
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where ri and r! are the distances from the point T to the i-th lattice point and to its image,
respectively, at z = -h (see the figure). At distances z that are large in comparison with the

lattice constant rg, the z-component of the field E, differs from zero:

eE: = ef.z + 2ne’n, Z )
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The stability limit is obtained by solving the problem of small surface oscillations with wave-
length A >> rg. The displacement of the j-th lattice point is (u., nj), where uj is a vector in
the plane z = 0. Expanding the expression for the electric field E = -V¢, where ¢(z) is given
by (3), in terms of the lattice deformations uj - uj and nj - nj (ujx = upexp(ikx), n; =
ngexp(ikx), we can easily calculate the forces acting on a given lattice point:

eE, =-2ne?n? + 2nenlkn, (1 + 2exp(- 2kh)) + i 2meZnl ku_exp(-2kh)

eE, = - 2ne?n2ku, (1 ~exp(~2kh)) - idne2nkn exp(- 2kh),
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The condition Ey + ikngE, = 0, which means that the force component tangent to the surface is
equal to zero, yields a relation between ugy and ng:
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The additional pressure due to the electric field is

du,
AP = _ eE_z(n: +8n,) = - eEzn:(l- ax).

The dispersion of the surface oscillations can be expressed, after simple calculations in the
form :
2
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In the limiting case kh >> 1, expression (4) coincides with the spectrum of the oscillations on
the surface of a liquid conductor (see [8]). The stability limit in this case is enZ < Vpoga/2m,
which yields for helium ng. ~ 2.2x10% cm™ and a field Ecpy ~ 4000 V/cm. At kh << 1 we have
w? = k%h/p[gp - (2meZng/h)].

1

The instability in (4) corresponds to kg = a™* (a ~ 0.05 is the capillary constant of H).
At ng > n., there develops on the helium surface a periodic structure, initially in the form of
bands of wavelength A ~ 2wa = 0.3 cm. In [3], where a photograph of a charged helium surface is
shown, the conditions are already close to those needed to observe the predicted effect, viz.,
ng v 10° em™2 and E = 2000 V/cm. The instabilities described in [5], which set .in when the sur-
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face is being charged, are apparently connected with the same phenomenon. We note also that the
periodic structure remains stable in the entire interval ng > n.., and because of its long-wave
nature it does not disturb the crystallization of the electrons into a Wigner lattice.
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It is shown that instability of the current or field with
respect to fluctuations with k # 0 can arise in systems whose
properties depend on two parameters that have different spatial
dispersion, if the differential resistance is positive, i.e.,
even if the current-voltage characteristic of the system is
single-valued.

Homogeneous distribution of the current or field in a system with negative differential
resistance is unstable [1, 2]. We show in this communication that a spatial instability, viz.,
a stratification of the current (field), can arise in a system with positive differential re-
sistance. The latter situation is realized, under definite conditions, in systems whose current-
voltage characteristic depends on two (or more) parameters having different spatial dispersion,

=fx, y, V).
Indeed, let the parameters x and y satisfy equations of the typel)
dx - _ ay
Tl—at— = LZAX - Q(X, Y, V), 7'2-5—'-— esz - q(X va)‘ (1)
The differential resistance of such a system is
o, Qel-aQ)) (Qar - a7Q))
ag=R; =f7+ f] + f (2)
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where the prlme denotes the corresponding partial derivatives (Q} = 3Q/9x). Linearizing the
equations in (1) at V = const2) with respect to perturbation of the type Aa = Acgexp(iwt -ik:¥),
we obtain the dispersion equation
i) = iolrfa) + E2k2)+ r(Qu+ L2k%)] - q,Q + (Q+ L7k?) x
(3)
x (q; + B2 =0,
from which it follows that the instability sets in (Im w < 0) if one of the following conditions
is satisfied:

ri(a, + 22k%) + 7, Q)+ L7KP) <0, @
L2024 + £2k%Q; +L%k%q7, +Q 97, - q;Q) < 0. (5)

It follows from inequality (5) that the homogeneous current distribution is certainly stable if
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