face is being charged, are apparently connected with the same phenomenon. We note also that the
periodic structure remains stable in the entire interval ng > n.., and because of its long-wave
nature it does not disturb the crystallization of the electrons into a Wigner lattice.
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It is shown that instability of the current or field with
respect to fluctuations with k # 0 can arise in systems whose
properties depend on two parameters that have different spatial
dispersion, if the differential resistance is positive, i.e.,
even if the current-voltage characteristic of the system is
single-valued.

Homogeneous distribution of the current or field in a system with negative differential
resistance is unstable [1, 2]. We show in this communication that a spatial instability, viz.,
a stratification of the current (field), can arise in a system with positive differential re-
sistance. The latter situation is realized, under definite conditions, in systems whose current-
voltage characteristic depends on two (or more) parameters having different spatial dispersion,

=fx, y, V).
Indeed, let the parameters x and y satisfy equations of the typel)
dx - _ ay
Tl—at— = LZAX - Q(X, Y, V), 7'2-5—'-— esz - q(X va)‘ (1)
The differential resistance of such a system is
o, Qel-aQ)) (Qar - a7Q))
ag=R; =f7+ f] + f (2)

.. . - y . . . s
Qa, - Q7q7) Q9 - qu,)
where the prlme denotes the corresponding partial derivatives (Q} = 3Q/9x). Linearizing the
equations in (1) at V = const2) with respect to perturbation of the type Aa = Acgexp(iwt -ik:¥),
we obtain the dispersion equation
i) = iolrfa) + E2k2)+ r(Qu+ L2k%)] - q,Q + (Q+ L7k?) x
(3)
x (q; + B2 =0,
from which it follows that the instability sets in (Im w < 0) if one of the following conditions
is satisfied:

ri(a, + 22k%) + 7, Q)+ L7KP) <0, @
L2024 + £2k%Q; +L%k%q7, +Q 97, - q;Q) < 0. (5)

It follows from inequality (5) that the homogeneous current distribution is certainly stable if
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Qxdy > axQy- (6)

It is known on the other hand [1] that a sufficient condition for such an instability is the
presence of a negative differential resistance. This means that the last two terms of the
inequality (5), while not exactly coinciding with (2), determine the sign of the differential
resistance. This takes place in all known cases [l - 4], including the example presented
below. This is natural, for the opposite would correspond to the following two situations: If

< 0, and inequality (6} is not satisfied, this means that in spite of the presence of negative
d%fferential resistance the homogeneous current distribution is stable. This contradicts the
conclusions of [1 - 4], If on the other hand R, > 0 in spite of the satisfaction of condition
(6), then this corresponds to the situation of interest to us, wher - the homogeneous current
distribution is unstable at a positive differential resistance of the system, The latter takes
place when the numerator of (2) goes through zero simultaneously with the denominator. We cannot
cite, however, a concrete example of a system in shich this situation is realized.

We discuss now the conditions under which the inequalities (4) and (5) are satisfied as
k ~ 0. In that case, when GyQy < 0, condition (4) can be satisfied also if Rg > 0. Such a si-
tuation is realized, for examp{e when 7 >> 15, and q] becomes negative at a certain voltage
on the sample, a case corresponding to the presence of '"hidden'" negative differential resistance
with respect to one of the parameters, y. Satisfaction of the inequality (4) means that the
dynamic resistance of the system becomes negative at a certain frequency. An instability of this
type in homogeneous semiconductors was considered in [4]. (We note that in our case such an in-
stability develops with respect to long-wave fluctuations, unlike the main instability of [4]).

The main result of this paper is the conclusion that if either the static or the dynamic
differential resistance is positive, i.e., when the inequalities (4) and (5) are not satisfied
at k = 0, an aperiodic instability can set in at k > 0. Indeed, as follows from inequality (5),
the stability of the homogeneous distribution is disturbed when

Sl o oY aza, - 0w k= g g gy v
Ty=- L AL «Ty =9 4y) at Ker® x9y = 9 ;) ’ )

from which it is seen directly that when L >> & the condition (7) with q{ < 0 and Q) > 0 can be
satisfied when the conditions (4) and (6) are not satisfied. An aperiodic instability then sets
in at a critical voltage determined by (7), only with respect to a definite k = k...

The physical meaning of this result is as follows. Owing to the different spatial disper-
sion of the parameters, the more ''rigid" of them cannot follow the fluctuations of the other (y)
with k = (L)~ 1724 e, a "spatial decoupling" of the parameters takes place at relatively
large k. It follows therefore that the present of negative resistance with respect to the "'soft"
parameter should lead to a stratification of the current (field). (Fluctuations with very large
k attenuate because of the large diffusion fluxes they produce.)

The conditions obtained for the stratification of the current at positive differential
resistance can be satisfied both in homogeneous semiconductors a d in semiconducting structures.
The simplest and at the same time important example in which this instability is realized is
Joule heating of a semiconducting p-n-p structure. The parameters that determine the current
of such a structure are the voltage on one of the p-n junctions, Vy, and the temperature T.
These parameters satisfy, respectively, the following current continuity conditions in the
n-region, averaged along the z axis perpendicular to the plane of the p-n junctions [2]:

v |
C—a;‘-= Wo ALVI—II{VI'T’V) ‘f‘IZ(Vl,T,V) (8)

and the averaged heat-conduction equation [5]

T-T
pc___g BT +1,V 41V - V)-——-—[Z,pc, (9

where
eV,
= sl(T)<exP"ﬁ - )‘““2 A7)
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eV,
I, = aylolT) (exp 3" 9+ 1,(T) + op(V -V

are the current densities through the first and second p-n junctions, I (T), (T), ay, and
oo are the saturation currents of these junctions and the current gains correspondlng to them,
W and ¢ are the thickness and conductivity of the n-region, oy is the specific conductivity of
the reverse-biased p-n junction [2], C is the specific capacitance of the p-n junctionmns, p, c,
and k are respectively the density, specific heat, and thermal conductivity of the material,
2, is the thickness of the structure, and t is the temperature relaxation time. As seen from
(8) and (9), the characteristic length of potential variation is L = vkTgqoW/eIg(To) [2], and
that of the temperature variation is & = vkt/pc [5], For real parameters we have L >> £, and
it is easy to verify that all the conditions under which the current becomes stratified at

a positive differential resistance of the structure are satisfied. This effect is observed
in experimental investigations of the thermal breakdown of such structures [6, 7].

We are grateful to A. P. Levanyuk for valuable discussions.
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1)Conditions of this type are satisfied, for example, by the equations for the
effective temperature of hot electrons [1] and phonons [3] and for the distribution of
the potentials across p-n junctions [2] in systems in which pinching of the current
takes place

)Inhomogeneous perturbations do not change the total current in the circuit, and
hence also the voltage across the sample [1, 2].
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The collective properties of a drop of Fermi liquid are
investigated on the basis of the self-consistency conditions
Formulas are obtained for the calculation of the surface-oscil-
lation spectrum characteristics, It is shown tat at large L
the spectrum of the surface oscillations of a-drop of Fermi
liquid is hydrodynamic.

In an earlier paper [1], the author attempted to determine the conditions under which a
Fermi system of finite (but suff1c1ent1y large) dimensions behaves like a liquid drop, namely,
its radius increases like R = ryN 1/3 and consequently even when a small number k of particles
is added the system density changes mainly at the edge, where this change is of the order of
8p(r=R) ~ (3p/3R)SR ~ k/N2/3 (for a gas of particles contained in a box of the same dimensions,
the change is Sp(r=R) ~ k/N). Such a behavior of &p for a drop is uniquely connected with the
existence of a spectrum of low-lying surface collective excitations, the characteristics of

which are expressed in standard fashion in terms of the parameters CL and BL of the collective
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