eV,
I, = aylolT) (exp 3" 9+ 1,(T) + op(V -V

are the current densities through the first and second p-n junctions, I (T), (T), ay, and
oo are the saturation currents of these junctions and the current gains correspondlng to them,
W and ¢ are the thickness and conductivity of the n-region, oy is the specific conductivity of
the reverse-biased p-n junction [2], C is the specific capacitance of the p-n junctionmns, p, c,
and k are respectively the density, specific heat, and thermal conductivity of the material,
2, is the thickness of the structure, and t is the temperature relaxation time. As seen from
(8) and (9), the characteristic length of potential variation is L = vkTgqoW/eIg(To) [2], and
that of the temperature variation is & = vkt/pc [5], For real parameters we have L >> £, and
it is easy to verify that all the conditions under which the current becomes stratified at

a positive differential resistance of the structure are satisfied. This effect is observed
in experimental investigations of the thermal breakdown of such structures [6, 7].

We are grateful to A. P. Levanyuk for valuable discussions.
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1)Conditions of this type are satisfied, for example, by the equations for the
effective temperature of hot electrons [1] and phonons [3] and for the distribution of
the potentials across p-n junctions [2] in systems in which pinching of the current
takes place

)Inhomogeneous perturbations do not change the total current in the circuit, and
hence also the voltage across the sample [1, 2].
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The collective properties of a drop of Fermi liquid are
investigated on the basis of the self-consistency conditions
Formulas are obtained for the calculation of the surface-oscil-
lation spectrum characteristics, It is shown tat at large L
the spectrum of the surface oscillations of a-drop of Fermi
liquid is hydrodynamic.

In an earlier paper [1], the author attempted to determine the conditions under which a
Fermi system of finite (but suff1c1ent1y large) dimensions behaves like a liquid drop, namely,
its radius increases like R = ryN 1/3 and consequently even when a small number k of particles
is added the system density changes mainly at the edge, where this change is of the order of
8p(r=R) ~ (3p/3R)SR ~ k/N2/3 (for a gas of particles contained in a box of the same dimensions,
the change is Sp(r=R) ~ k/N). Such a behavior of &p for a drop is uniquely connected with the
existence of a spectrum of low-lying surface collective excitations, the characteristics of

which are expressed in standard fashion in terms of the parameters CL and BL of the collective
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Hamiltonian

1 » 1 .
H) = 55 lay, ' = 38 1a, |, (1)

In [1] we considered a simple model, in which it was assumed that the local interaction
I' between the quasiparticles differs from zero only on the system surface, where it coincides
with the vacuum value I'V83C¢, Tt was found that the system acquires the properties of a liquid
when the dimensionless parameter f = FvachM*/vr2 (pF is the Fermi momentum) becomes close to
the critical value f_, which does not depend on the system dimensions and at which the frequency
of the monopole osci?lations vanishes.

It will be shown in this paper that a real system retains many features of the model of
[1]. We begin with a consideration of the self-consistency condition for the quasiparticle
Hamiltonian Hp(r, p) = (p2/2m*) + V(r), the Green's function of the quasiparticle GY(r,p,e) =
a(r)(e - H )jl, and the local interaction T®(r). This condition is easiest to derive by stipu-
lating that the frequency w; of the dipole oscillation be equal to zero, since such an oscil-
lation is none other than a shift of the center of gravity of the system. This means that the
standard equation of the theory of finite Fermi systems [2], which determines the spectrum of
collective excitations of multipolarity L (se confine ourseves here to the zeroth harmonic of
the local interaction I'*)

g, {r,wg) = T%(r) [AL(r,rwg) g (r wg) dr” (2)
where dr = rzdr and
. 1 .
ALlr, ' o) ='Z—-ffA(r,r w)F (nn")dndn’ 2"
m
Alt,t @)= [G¥Hr, 17, ¢+ ﬂ)Gq(r' f, €~ — de/2mi @2m
2 ] 2 2

has a solution at w; = 0.

As is well known, the amplitude g (r) is proportional to the change of the self-consistent
field I(r) on going from the ground state to the collective excitation of the system. Similarly,
the amplitude gf(r), which satisfies an equation conjugate to (2}, is proportional to the change
in the density pzr) = JG9(r, p, e)de/2mi on going to the ground to the collective state. It
follows from the foregoing that g,(r) ~ 3I(r, u)/3r, where

d2rK) F“’(r)fAl(r.r'w=0)—a—2~(r;u)dr' (3)

dr ar’

since gj(r) ~ 2(; + SK) - Z(;) v (3z/3r)SR, where S8R is the shift of the center of gravity of
the system, and I(r, u) = (M*/M)V(r) - u(M*/M - 1) [2]. Similarly, g} ~ 3p'"/3r, and we can
rewrite (3) in the form

dp(r)
dar

q ’

=fA1(r,r’,w=0)rw(r')—(%-p—~(;—l dr’ 4)
dr

(the self-consistency condition was derived in a different form in [3]; the author thanks Dr.
Mayer for pointing out this paper). A rough estimate of the value of fYaC = rvacp M/n2 at which
a nontrivial solution of (4) first appears can be obtained by replacing I'¥ in (4) by V2¢, since
the difference between I'“ and I'V®C becomes immaterial in the vicinity of the critical point,
where the surface becomes smeared out. If we use in (4) the quasiclassical formula A(¥;, ¥»)
=(ppM/n2) 6 (¥, - T5), then we get fgac = -1, We note that a neutron liquid satisfies this rough
criterion, since the value f$2¢ = - 1.4 was calculated by Yu. V. Gaponov for free neutronms
scattered at energies e ~ 40 MeV [2].

It is easy to verify with the aid of (4) that there exists an entire spectrum of low-lying
surface oscillations. Indeed, the propagator A(¥, ?2) defined by the integral (2') has a sharp
§-like peak at the point ¥, = ¥, with a width |¥, - ¥,| ~ ry. For the considered case of surface
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waves, this peak makes the decisive contribution to (2), and therefore at L < N1/3 the Legendre
polynomial Py (x) can be taken outside the integral sign in (2) at the point x = 1, in first-order
approximation, as a result of which Aj no longer depends on L. Then, obviously w;, = wy = 0 and
gr = g1 v 3X/9r, i.e., the surface-oscillation spectrum becomes degenerate, In tke higher appro-
ximations this degeneracy is lifted for the following reasons: 1) the presence of long-range

. . . . : 1n .
components in A(r;, rp) gives rise in gy (r) 70 volume corrections gy (r), the amplitude of
which decreases with increasing L: gfh ~ N-1 3L"1g1(k); 2) the contribution of the local part of
A(r;, ry) to the integral (2') also decreases with increasing L. At L > 1, the surface-oscil-
lation frequencies can be obtained from the relation

ax(r,) 3 a
w? = If a,l l(Al('l' ry, 0 = 0)‘AL(’1,'2"’=0));drld’2/ff azr'(fl)x
z 1
5
« dA,_(rlrz) _Q_E_ dr‘dr2 )
dw? dr,
o

which follows from (2) and (3). In the considered case of L > 1, the numerator of (5), which

determines the surface rigidity Cj, can be simplicied by substituting in (2') the expansion

Pi(x) =1-1L(L+ 1A - x)}/2, from which it follows that

L(L+1)
8z

Comparing now (5) with the hydrodynamic rigidity Cp ~ oR2(L - 1) (L + 2), where o is the surface-
tension coefficie~t, we can obtain the following formula for o (in the approximation where
the radius of the interaction forces is zero)

1 az(rl) aZ(r)
o = Wff_a_r—l_A(rl' rp @=0(1-n;n) 3r22

Allryy r) = Aglrr,) = SIA(E 1) (1~ nn,)dn dn,. (6)

& dir, . )

A rough calcylation of this integral in the square-well model yields for the nucleus a value
4mR%g =~ 25A2/3 MeV, which differs from the experimental value by only 30%.

The calculation of the right-hand side is somewhat more complicated. After rather lengthy
manipulations, we obtain (dAp/dw?) ~ L™!, from which it follows that wf ~ L3/N, i.e., the
spectrum of surface oscillations with L > 1 is hydrodynamic. Let us turn, in conclusion, again
to small L, or more accurately to the case L = 0. It is easily seen that unlike in ordinary
hydrodynamics, the surface oscillations includes also a monopole oscillation (L = 0). Its
frequency is wg eFN‘l 3, and its amplitude go(r, w) (see (2)) has a sharp maximum on the
surface of the system. Although no 0% level with such properties has been observed as yet (a
possible candidate is the first level in 160 at 6.06 MeV), its influence on the behavior of the
system is most appreciable, for no matter where the particles are added, they excite this
collective level strongly, as a result of which the greatest change of density occurs on the
edge of the system and its volume increases in proportion to the number of particles. To see
this, we.write down the usual equation for the change of density &p (more accurately, of the
spherically-symmetrical component) following the addition of several particles [2]

Splr) =8 p(r) + JA (r,r ", @ =0?(r")8p(r")dr", (8)

where §gyo (r) = Z¢2Ai(r).
Bearing relation (4) in mind, it is convenient to separate from A0 the surface term

ap%(r)) apq(rz)

Ao(’l"z) = Ko + ao(rl' rZ)' (9)
arl dr,

where kg is defined by the requirement

dp(r,) dp(r,)
f ao (’10 rz)“—
a-rl or

drydr, = 0, (10
2
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As a result of such a subdivision of Ay, we can separate in 6p accurately the surface con-
tribution and write down the solution of (8) in the form

Splr) =8p(r) +v,8,p(r), (11)
where §,p satisfies the equation

B1p(r) = 8,p(r) + [&,(ryr YTO(r")8,p(r ) dr ", (12)

the solution of which is insensitive to details of the behavior of I'“(r) in the transition layer.
The function 6&,p(r), defined by the equation

apr)

8,p(r) = s A, )T (r")8,0(r")dr” (13)

ar

has a sharp maximum on the surface and is small on the inside. The constant vy is defined by
the relation
a3(r) ] 2(r)
v, = K, f—ar— S,plr)dr f(1- « f———r— 8,p (r)dr ). (14)

The denominator of this e7gression is small so that we can estimate vg at vy ~ N71/N-1/3
~ N-2/3 whence 8o(r =R) ~ k/N2 This means that a real nucleus behaves not like a gas of 'in-
teracting quasiparticles, but like a liquid.

In conclusion, the author is deeply grateful to G. A. Pik-Pichak, V. M. Galitskii, D. P.
Grechukhin, R. 0. Zaitsev, A. B. Migdal, E. E. Sapershtein, and S. A, Fayans for a fruitful
discussion of the work.
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Quasiclassical solutions for the energies and matrix ele-
ments of the Gamow-Teller resonance are obtained within the frame-
work of the theory of finite Fermi systems. It is shown that in
medium and heavy nuclei this resonance is described in the Wigner
supermultiplet scheme, and belongs together with the analog state
to the supermultiplet (T 0, 0).

The investigation of the isobaric I+ states in microscopic nuclear theory has shown [1, 2]
that there exists a distinct tendency towards collect1v1zat10n of the pfi branch of the states
of this type, so that-a preferred collective isobaric I* state, the hypothetical Gamow-Teller
(GT) resonance, should exist. This state lies in the region of the analog state and has appar-
ently been observed in the region of light [3] and medium [1] nuclei.

In the theory of finite Fermi systems [5], the characteristics of the collective isobaric
state can be obtained in the quasiclassical approximation by the method of [6]. In terms of the
parameters Aer (the energy width of the excess-neutron layer), Ser (the relative displacement
of the Fermi p and n surfaces) and e (the average spin-orbit energy of the last shell), and in
the approximation dep > 2e, the GT-resonance energy is

€

+ T g gy e 6]
gAep 1+ bg’

o

w =0eg + AeF +. (o +b)g;AeF +ae; a=

The energy w is reckoned from the ground state of the even-even nucleus A(N, Z), and the GT
resonance is observed in the nucleus A(N - 1, Z + 1). Assuming the system of functions to be

75





