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It has been long known that a strong interaction of an
electron with phonons in a polar crystal leads to a lowering of
the energy [1] and to a change in mass [2]. We calculate here
the polaron mobility determined by its interaction with thermal
optical phonons.

The interaction Hamiltonian corresponding to scattering of a phonon by a polaron can be
separated in the strong-coupling limit with the aid of the transformations of Bogolyubov [3]
and Tyablikov [4] in conjunction with the transformation of Lee, Low, and Pines [5], which
describes the transition from the c.m.s. to the lab, system. In the principal order in the re-
ciprocal coupling constant ¢ = 1/av2 << 1, the principal role in the scattering is played by
two-phonon processes. In the system of units h = m = e2(e"! - ¢"¥) = 1, the sought Hamiltonian
takes the form ®
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where Eg is the polaron shift [1], the second term is the kinetic energy of a polaron of mass
[2], the third term is the energy of phonons with frequency wy = €2, and the last term de-
scribes phonon-polaron scattering with a Born amplitude
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where ¢, and E; are the eigenfunctions and energies of the electron in the polarization well
corresponding to the ground state (see [4]). In this approximation, the Hamiltonian can be
obtained also by Allcock's method [6].

At temperatures T lower than the phonon energy wg = e, Boltzmann's kinetic equation is
valid by virtue of the small number of thermal phonons. Since the polaron energy is not altered
by scattering from phonons without dispersion, the following expression holds for the mobility:
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where WY . is the amplitude of scattering of a phonon by a polaron with momentum p, and fu(p) is
the Maxwellian distribution function.

If the momentum transferred in the collision is small in comparison with the thermal mo-
mentum of the polaron, it can be assumed that the phonon is scattered by a polaron moving with
constant velocity v = p/ﬁ. The amplitude of this process is connected with the Born amplitude
e?B_y k' by the equation
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It is important that owing to the large polaron mass, M n ¢ “m, the integral term in (4) con-
tains the large parameter e2/v >> 1. Taking the Fourier transform of this equation with respect
to k - k', we get
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where r = (p, z); the cogrdlnate z is directed along v, and the gradient in the function B does
not act on the argument r of this function.

It is convenient to introduce a new function g defined by

- i [WP(P, 2z kT)dz" = vIl-G(r; k)],
z
and satisfying the homogeneous equation
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It will be shown that the main contribution to t(p) is made by momenta k' ~ (/)15 > 1. 1t
is therefore natural to seek g in the quasiclassical form

'g":a(r;k')ex?{ik')((r;k')i. (6)

In this moméntum region we have
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The functions a and x from (6) depend on k' and v/e? only via the combination £ = 8we2/v(k')3:
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Changing over in (5) to integration with respect to & and the angles, we obtain an expression
for the mobility
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where the numerical coefficient y ~ 1 is given by the formula
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From (7) and the corresponding boundary conditions we see that ag n(;, -») = 1 and the integral
with respect to f converges at the upper and lower limits. It follows therefore that the ef-
fective £ are those of the order of unity, thus confirming the foregoing estimate of the sig-
nificant values of k'. The requirement that th7 thermal momentum of the polaron greatly exceed
k' imposes on the temperature the condition el0 3 << T. Thus, the temperature interval in which

formula (8) is valid is given, in dimensional units, by
o

—a—'“} << T << ®, .
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A more detailed analysis of the polaron-phonon interaction will be published later.

We are grateful to S. V. Iordanskii and E. I, Rashba for interest in the work.
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Upper bounds on the mass of the supercharged quark, which
follow from an analysis of the K; + 2u decay and the K, - Kg
mass difference, are obtained within the framework of a weak-
interaction scheme based on hadron SU(4) symmetry.

The need for introducing supercharged hadrons is connected with the requirement that there
be no weak neutral currents with ASI =1 [1]. A renormalizable scheme of weak and electromag-
netic hadron interactions, based on introducing a fourth p' quark, was proposed in [2, 3]. We
derive below bounds on the masses of the p' quark and the ordinary p quark; these bounds
follow from an analysis of the Kp + 2u decay and the Kj, - Kg mass difference. The analysis
is based on the assumption << Mpr << Uy, where Mps My, and uy are the masses of the p quark,
the p' quark, and the W boson.

We start with a calculation of the annihilation amplitude of free quarks X and n into a
pair p*p~, This amplitude can serve as an effective Lagrangian, the matrix element of which
between the states KO and the vacuum gives the amplitude of the sought process Kp + u*u-.

In the calculation we have used the so-called generalized &-formalism [4]. It reduces to
selection of a gauge in which the vector-field propagator is equal to
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The unphysical pole at q2 = u2/¢ is cancelled by the contribution of the fictitious scalar par-
ticles with mass u2/£. The final expression for the amplitude, of course, should not depend
on §&.

We note the following curious circumstance: In the usual £-formalism [5], which uses the
propagator (1) with subsequent transition to the limit £ - 0, there are no fictitious scalar
particles. Yet the contribution made to the discussed amplitude from certain diagrams contain-
ing these particles remains finite also as £ -+ 0, In the usual £-formalism, the absence of
such diagrams is compensated for by modification of the vector vertices.

One more remark concerning the calculation technique. Calculation of the ZAn vertex gives
rise to divergent diagrams with scalar particles. Although the divergences cancel out mutually,
the question is raised of the correctness of the calculation of the finite part of the ampli-
tude. A gauge-invariant method of obtaining the answer may be the Pauli-Villars regularization,
wherein one introduces an additional isodoublet of scalar particles with indefinite metric and
anticommuting commutation relations. The mass of these particles plays the role of the cutoff
parameter and should be allowed to go to infinity.

Another way is to use the Ward identity for the ZAn vertex. A nonzero vertex at a Z-boson
momentum k, = 0 is then possible only if the current jﬁ, the source of the field Z,, is not
conserved.

By this method, the calculations can be performed also without using the £-formalism,
directly in the Proca gauge. Taking into account the relation

83





