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One of us, together with Sedov, has shown in [1] that the anomalies of invar alloys can be

explained by assuming that an exchange interaction that
tation exists between the electrons of neighboring iron
these alloys. That is to say, the exchange integral is
I'e¥e < 0, whereas the corresonding integrals IFeNi apd
in [1] was further devloped in [2, 3]. The features of
also from the point of view of the model of rigid bands

disrupts in part the parallel spin orien-
ions in the face-centered lattice of
negative for neighboring iron ioms,

INiNi gre positive. The model proposed
invar alloys were discussed recently

in [4, 5].

The main shorcoming of [1 - 3] was that the localized-spin model used in them was more
readily suitable for dielectrics than for metallic alloys. The shortcoming of [4, 5], to the
contrary, was that they were based on a model in which no account was taken of the singularities
of the state-density curve for a disordered alloy. Nor was allowance made for the exchange in-
teraction between nearest neighbors, which strongly influences the magnetic properties of
alloys [6, 7].

In the present article we discuss the properties of invar alloys from the point of view
of the model of strongly coupled electron and we use the coherent potential method (CPA) pro-
posed by Soven [8] and by Velicky et al [9] (see also [10]). We introduce in the Hamiltonian
additional parameters that characterize the electron exchange interaction between neighboring
ions, averaged over the configurations.

We express the Hamiltonian for a binary ferromagnetic alloy in the form

H=H1+Hz,

(1
Hl= z fom an.:-) Img * z €n "ﬂa""(l/z)2 U"n"an"a"ol (2)
nymao n,g no
Hy=-23% I (SkSx + S SY + SIST), (3)
n, m
S: =(l/2)(d:’ Gn* +a:' an’ )’
SY=(1/2i) (a}, oy -a:' ny) s (4)

S'z':(]/z) (nn’ 'nn')’
where t__ = tAA, tﬁg, tﬁg are the transfer integrals and I, = IAA, IAB, and IBB are the ex-
change ?ﬁtegrgTs between the electrons of the nearest-neighbor ions A and B occupying lattice
pdéints n and me, = €7, eB, U, = UA, UB are integrals characterizing the Coulomb interaction
of the electrons at the ions o? kind A and B occupying the site n, and a}; and a,, are the
creation and annihilation operators for electrons with spin ¢ at the site n. We associate with
each site two states, one with spin up and the otth with sgin down. In the considered case of
invar alloys we assume, as in [1], that TAA ¢ 0, I B 0, I B> 0 and UA = UB = u.

We seek a solution for the average energy and the average magnetic moments in the Hartree-

Fock approximation, replacing in the third sum of the Hamiltonian H; the operator n, _, by its
>
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mean value <n, _s> and representing Hy in the form
s

H2=...Z Inma:dan,‘a Q;,-O ma-(z/z)zl (n ')’ )
n,m,o
where
I, =1%,18,

A_ _JAA AB
I =xI?% My +y12° Mg, 6)

1B < xI1AB M, 4 yI1BB Mg

z is the number of nearest neighbors (z = 12 in our case), x and y are the concentrations of
ions of kind A and B, respectively, and MA and MB are the average magnetic moments expressed in
Bohr magnetons, My (py = <nn+B > - <nﬁ£5)>.

In our case we disregard differences of the type tAA - tBB, and put
AA _ _AB 8B
tom =thm = tom =',(32‘ 7

Substituting (5) in (1), neglecting in (5) the first sum, which is small at low tempera-
tures in comparison with the second, taking (7) into account, and introducing the mean value
<Np,.g>, We express the Hamiltonian in the form

HexH,= 2 #0a¥ a  4(1/2)% ¢ ., ®)
a

n,m, & : no
where

ny

ey =) = AB) (1/2) U <nA(B) >, A(B)],

9
€ny = 4 (B) = ABY L (1/2) [U <nAlB)s , o 1AL, ®

With a Hamiltonian of this type we can use the CPA procedure.

We have calculated the average atomic moments of the components of a disordered alloy
under various assumptions concerning the shape of the state-density curve. We present here
the calculation results for two limiting cases: 1) the case of split narrow bands, when

>> % and 2) the case of a pseudocrystal, when, to the contrary, 85 << 1, where 8, =
/W and W is the width of the band. The case of an insulator, when W = 0, is excluded in
thlS case, i.e., for &5 >> 1 and W »~ 0 we consider the limiting case when the self-consistent-
field method is still valid.

In the first case, as W » 0, the calculation leads to the following expressions for the
atomic magnetic moments

My =nk, Mg=nB if x< %, (10a)
My = (-xH8 i xyx, (10b)
x[1AR | - (U/22)
1 u n:)‘ |IAA| "3‘
% =1+ 2z I|AB nf 1+ |AB ng an

nﬁ and n% are the numbers of electrons per atom in the pure metal A or B, respectively. Formu-
las (10) describe qualitatively correctly the observed concentration dependence of the average
magnetic moments M = xMp, +yMy; of the alloys By specifying I and U/z we can roughly estimate
the concnetration xy. Thus, at |IA [ = 1AB - BB . U/z, substituting nj - ng® = 2.6 and ng =
nol = 0.6, we obtain from (11) xg = 0.6, which agrees with the observed value.

In the case of a pseudocrystal and bands of rectangular shape, the calculation leads to
the expression
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M=xMa+yMg =(v/2WN) IxMy [(U/22) + xIAA 4 y1AB],
(12)
+yMgl(U/2z) + xI*8 4 y1881y,

where v is the number of states in the band and N is the number of atoms of the alloy.

Since 6, << 1 in our case, which is equivalent to W >> U, I, the equalities in (12) are
compatible only if M = My = My = 0, The limiting case of narrow bands, while a crude approxima-
tion, still enables us to observe a possible cause of the observed singularities of invar alloys.
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It is predicted that the diamagnetic susceptibility of a
plate is subject to quasiperiodic temperature-independent oscil-
lations due to electrons whose orbits are tangent to both plate
boundaries. The calculation is performed in the one-electron
approximation of band theory.

For a plate of thickness L, we investigated theoretically the dependence of the diamagnetic
susceptibility x on the magnetic field H parallel to the plate boundaries. The calculation was
within the framework of the one-electron approximation of band theory in the quasiclassical ap-
proximation. We predict the existence of unique quasiperiodic oscillations of x, which depend
little on the temperature. The oscillations are due to internal (not Fermi) electrons. The
oscillations should be observed not only in metals, but also in dielectrics with sufficiently
broad bands.

Quantization of the electron energy in a magnetic field leads to a complicated dependence
of the thermodynamic potential © of the electron gas on the magnetic field. Confining ourselves
to the quasiclassical approximation (see below), we can say that each quantized orbit of the
electron adds to @ a contribution that contains a periodic function with argument cS/ehH, where
S = S(e, pz, Px) 1is the area inside the orbit traced by an electron having an energy ¢ and mo-
mentum projections p, and p, in momentum space (or part of the trajectory lying in the plate).
The axes are chosen such that H, = H and H, = H,, = 0; the y axis is perpendicular to the plate
boundaries; the plate occupies the strip 0 < y < L. Summation (integration) over all orbits
results in contributions to the oscillating part of © (which we denote 62) from orbits of elec-
trons having an energy equal to the Fermi energy and an extremal area S, i.e., the electrons
for which 3S/8p, = O (the de Haas - van Alphen effect, which is observed in metals and in dege-
nerate semiconductors [1]). In the case of plates, however, 80 receives contributions not only
from these orbits, but also from orbits that are tangent to the two plate boundaries, and natu-
rally satisfy the quantization condition

S(e,p,)=(20heH/c) (n+5/6), n=1,2,3,... (1)
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