as a result, a definite contribution to the
dimension of the focal spot may be made by
effects of thermal conductivity (this was
indicated in [7]).

5. Nonstationary thermal self-focusing
was cited by a number of writers [8] as an
explanation for the damage to crystals and
glasses 1in the fleld of 1aser pulses of
duration from 10~* to 10~% sec. However,
the authors of these papers used the for-
mulas of the stationary theory.

The foregoing results enable us to de-
ftermine quantitatively the dimensions and
the positions of the regions of the strong
field and to determine distinctly the con-
tribution of the thermal self-focusing to
damage to dielectrics.
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Fig. 3. Dependence of the di-
mensionless width of a Gaussian
beam at the focus on the ratio
of the beam energy to the
critical energy. We see that
the inertia of the nonlinearity
leads to a limitation of the

field at the focus (fmin # 0)

.S _ ; ; . :
6 elf-defocusing in a medium with even for (WO/WCT) > 102 .

inertial nonlinearity. The foregolng pro-
cedure 1s fully applicable to an analysis
of nonstationary self-defocusing. The corresponding solution of the equation
for the defocusing medium is shown in Fig. 1, curve 2. The dynamics of the
nonstationary defocusing is shown in Figs. 24, 2e, and 2f. The region of
maximal expansion moves with a velocity up = (2/3)u. The divergence of the

radiation 1s different for different sections of the pulse; the latter leads to
strong distortions of the shape of the 1light pulse on the axis Po(n)/f?

It should be emphasized that the foregoing approach makes 1t possible to
calculate the internal self-defocusing which takes place for the case when the
beam of a powerful laser diverges strongly in the nonlinear medium itself.
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The Jahn-Teller instability, which is produced in an excited F-term of an
octahedral local center because of the interaction with tetragonal (E)
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vibrations, leads to the appearance of three equivalent minima of the adia-
batic potential in the two-dimensional space of the E coordinates!’). We shall
show that from measurements of the temperature dependence of the linear
dichroism of the luminescence, due to a uniaxial elastic deformation of the
crystal, it 1s possible to extract directly an important characteristic of the
electron-vibrational interaction, namely the square of the overlap integral

e—0 of the wave functions of the fundamental vibrational states pertaining to

different minima of the adiabatic potential (see (9) and (11)).

Let us consider an optical transition of the F > A type. In the case of
a deformation along <110>, the Hamiltonian can be written in the form

(1)

H = ":'o+ V+ W,
P T
Ho = 2 r= G+ 10, (2)
i=2,6 2W, 2
Vyt g ¥=-FC, (3)

(the terms that depend on Qs3, Qs and Qs make no contributions to the dichroism).
Here Qi are the normal coordinates of the octahedral complex after Van Vlieck

[1], B and Y are the constants for the coupling with the E and T vibrations,
respectively, F is proportional to the deformation, and ti are the electronic
operators on the wave functions of the excited state:

' L ()
0

The intensity of the luminescence with polarization n is given by

n ) (5)

1
! .-.Z“’Spf:(—-———) FYF_, Z=5 V(‘
n kT L) 1

where Pn is the dipole-moment operator. Regarding V + W as a perturbation, we

expand the density matrix p(A) in a series up to terms of second order inclu-
sive, and use the coordinate representation for poe(X) = exp(-AHo) [2]. We
then cobtain for the ratio of the intensities of the parallel and perpendicular

components of the luminescence
I
r =4l 1-2Fy, 6)
Iy
1 ! h -
A = exp| - 20sh £(1-x)shéx dx, )
xprkT 0 shé

1)The interaction with the trigonal (T) vibrations is relatively small.
The reason is that the electron wave functions of the ¥ term are "oriented"
along a fourfold axis, and therefore the radial (type E) displacements of the
nucleil lead to a larger change of the energy than the tangential (type T; for
detalls see the review [1]).
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hog 2p? 36 (8)

f=—, o=

where (- is the Jahn-Teller energy of the E oscillations. The temperaturé
dependence of A, described by formula (7), has the following form:

e-c
A= — (T<<T,), (9)
KT kT
A= KE (T<<T<<T,), (10)
ﬁzKr
A= ! (T>>T,), (11)
kTkT
1 - 1
kT,t-z—ﬁwEat o, sz =7ﬁw50. (12)

Formula (10) (without 1limits of applicability) was obtained by Shimada and
Ishiguro [3], who took into account only the static effect of rotation of

the dipole moments of the transition, neglecting the distortion of the nuclel
completely. At high and at low temperatures, the main contribution is made

by the splitting of the electron level, and formula (6) can be represented in
the form r = 1 - (SE/kT). The splitting SE = (ZEY/KT)S, where S is the square

of the overlap integral of the vibrational functions. When T >> T2, the prin-
cipal role is assumed by the highly=-excited vibrational states, for which S = 1
and we arrive at formula (11). When T << Ti1, only the ground vibrational level

is populated, and for this level S = e_g, which leads to formula (9). There
occurs, as it were, a decrease of the perturbaticn (meaning of the splitting
§E) due to the presence of the Jahn-Teller interaction [47]. Thus, the most
essential deviations from formula (10), which are connected with allowance for
the kinetic energy in the Hamiltonian (2), occur at high and at low tempera-
tures.

We performed numerical calculations for KI:T1+, usin% the following data

£3]: |B| = 0.28 eV/K, Kg = 2.7V eV/Kz, and Kp = 1.3v eV/R , Where v is a num-

ber on the order of unity. If we put v = 1 and My = M; = 2.1 X 10722 g, then
hwE/k = 110°K and ¢ = 6. We then get T; = 0.8°K and T» 330°K. Under the

experimental conditions of [3], 2°K < T < 70°K, and consequently the static

approximation (10) is valid. Observation of the temperature dependence of A,
due to the dynamic effects, is much easier for centers with a weaker.coupling
|8] and with larger frequency wn. Thus, for example, for [8] = 0.20 eV/A and

with the other parameters fixed, we have o = 3, T = 8.2°K, and T; = 165°K.
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