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Tremendous magnetic fields on the order of 10'? G, which exist according
to present concepts in neutron stars, can greatly change the physical proper-
ties of matter, particularly those of isolated atoms [1, 2]. One of the
authors [1] has shown that in the magnetic field interval 7Z'/® < B < 2% (7 -
atomic number, B - magnetic field in atomic units of m®e?ch~? = 2.35 X 10° G),
the ground state of a very heavy atom can be described within the framework of
the modified Thomas-Fermi model. The atom retains in this case spherical sym-
metry, and its radius varies like 7'/5B=-2/%, The same article contains quali-
tative ideas concerning the possible conservation of spherical symmetry also
when B > Za, when not more than one electron remains at each level. However,
the latter statement turns out to be incorrect - the more accurate quantita-
tive analysis presented below for the limiting case B > Z? shows that in this
case the ground state with minimum energy corresponds not to a spherical elec-
tron density distribution, as in the case when B < Zs, but to a distribution
strongly elongated in the direction of the magnetic fileld. In this sense the
case B >> Z3® corresponds to the hydrogen atom at B >> 1 [3 ~ 6].

When B >> Za, the levels that are lowest with respect to the azimuthal
quantum number m are occupied in the ground state by not more than one elec-
tron per level [1]. In the self-consistent-field approximation, the energy of
an atom or an ion in a superstrong field is determined by the expression (in
atomic units):
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where ;i is the Eoordinate of the j-th electron, rj is its distance from the
nucleus, r; = lri - rjl, and the wave function ¥ is chosen in the form of an
antisymmetrized product of single-particle wave functions in the form
eimeRm(p)WOm(z), with the radial part Rm corresponding to fthe lower Landau
level (p, 8, and z are the cylindrical coordinates), and WOm corresponds to the

lower level of the longitudinal motion for the given m. In expression (1), as
we see, there remain only the kinetic energy of the longitudinal motion and
the potential energy. We neglect the exchange correction and replace ¥ simply
by the product of the single-particle wave functions in the self-consistent
electric field. Expression (1) then goes over into a sum of integrals with
respect to the single-particle wave functions, and E can be expressed in terms
of the average electron density n = Ziwg. We define the average wave function

¥ by means of the relation ¥? = n/N; from (1) we obtain
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o The energy of the ground state is determined from the condition of the
minimum of the functional (2) under the additional condition f¥%dr = 1, and the
occupation numbers do not exceed unity. The radial wave function Rm(p) is

localized relatively close to P = V2m/B, and when all the shells from m = 0 to
m = N are filled, the electron density is bounded by a cylinder of radius Py =

veN/B, i.e., n(pi z) decreases rapidly when p > one We choose a trial func-
tion in the form
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where o is a parameter determined from the condition that E be a minimum.

At very large B, we have apN << 1, i.e., the electron cloud is strongly

elongated 1n the direction of the magnetic field. Taking this into account,
we obtaln with logarithmic accuracy, after substituting (3) in (2),
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Expression (U4) can be obtained in a simple manner from the following con-
siderations. The second fterm in (4) corresponds to averaging of the quantity
1/r = 1/%z with the running density A = a exp(-2af[z|) and with cutoff of the
logarithmic divergence for small z at a value Zoin v pN. In the third terms

of (2) and (4), the quantity <1/r> can be regarded as the potential ¢ at the
point z of a thin charged linear body of radius pN with a running density X.

But the potential ¢ 1s determined, with logarithmic accuracy, by the local
value of the running charge density A, and is equal to ¢ = 2x 1n (1/apN),

where 1/a is the characteristic length of the charge distributlion. Averaging
this potential with weight A gives the third term in (4). From the condition
of the minimum of (4) with respect to o, assuming approximately that L is con-
stant, we obtain, with logarithmic accuracy,
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From the known o we obtain, with logarithmic accuracy, the value of L at N = Z

p=ly B, (6)
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An estimate of the binding energy in accordance with fThe spherical model
[1] would yield E ~ Z3%, which is smaller by a factor L? than (5). Thus, when
B >> Z%, a lower energy is possessed by an electron cloud elongated in the
direction of the magnetic field. We note that when Z = N = 1 expression (1)
coincides, with logarithmic accuracy, with the energy of the ground state of
the hydrogen atom [6]: E = -(1/2)(1n B)2, so that formula (5) is suitable for
small Z. -

L) he exponential dependence of Y on z corresponds to a "deep" ground
level.
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From (5) we obtain the ionization energy of a neutral atom E; = ~8E/BNIN_Z:

E, = {}LZZ’. (7)

As seen from (7), in the limiting case B >> Z° the ionization energy in-
creases very rapidly with Z, unlike the results of [2], where the ionization
energy at B = 2 x 10'% @ is approximately constant in the interval 1 < 7 < 10.
This is due to the fact that the parameters in [2] pertain to the intermediate
region B v Z%, and the asymptotic formula (7) is possibly not yet applicable.
We note that a correction for the exchange interaction turns out to be small
compared with (7) at large Z [2].

It follows from (5) that at N > Z the energy E decreases with N. There-
fore the formation of negative ions is energetically favored up to N = 47Z/3,
where 9E/ON = 0. Even more favored, at not too high temperatures, is the for-
mation of molecules with large binding ener;y. In addition, inasmuch as the
atoms that are strongly elongated at B >> 7Z° have a large quadrupole moment,
their interaction energy should be very large, and apparently even at tempera-
tures ~10° deg heavy matter in a superstrong field can become condensed into a
solid phase even on the surface of a pulsar. This will be considered sepa-
rately.

[11 B.B. Kadomtsev, Zh. Eksp. Teor. Fiz. 58, 1765 (1970) [Sov. Phys.-JETP 31,
945 (1970)17.

[2] R. Cohen, J. Lodenquai, and M. Ruderman, Phys. Rev. Lett. 25, 467 (1970).

[3] R.J. Elliott and R. Loudon, J. Phys. Chem. Sol. 15, 196 (1960).

(4] H. Hasegawa and R.B. Howard, J. Phys. Chem. Sol. 21, 179 (1961).

[5] B.S. Monozon and A.G. Zhilich, Fiz. Tverd. Tela 8, 3559 (1966) and 9, 673

(1967) [Sov. Phys.-Solid State 8§, 2846 (1967) and 9, 523 (1967)1.
[6] L.K. Haines and D.H. Roberts, Amer. J. Phys. 37, 1145 (1969).

DIFFUSION MOBILITY OF NEGATIVE IONS IN SOLID HELIUM

V.B. Shikin

Physico-technical Institute of Low Temperatures, Ukralnian Academy of
Sciences

Submitted 13 November 1970

ZhETF Pis. Red. 13, No. 1, 65 - 67 (5 January 1971)

The purpose of this article is to calculate the mobility of negative ions
under the assumption that this mobility has a diffusion corigin. An electron
in a vacuum bubble of radlus a = 10 & [1] begins to exert an asymmetrical pres-
sure on the bubble walls when an external electric fileld of intensity E is
turned on. This pressure, after a certain adjustment process, leads to a
stationary diffusion flow of vacancies from high-pressure to low-pressure areas.
This flow causes the bubble to move as a unit in the direction of the driving
field BE. Diffusion problems of thls type were encountered already, for example,
in [2] in the study of the diffusion-viscous flow of polycrystals under the in-
fluence of pressures applied from the outside. Therefore the system of equa-
tions which we need and 1its proofs can all be taken from these papers.

The Stationar% volume field of the vacancies c(;) is described by the
harmonic equation?

e neglect surface diffusion over the surface of the ion, since the sur-
face layer of the ion is under a large spherically-symmetrical electron pres-
sure, and consequently the surface diffusion cannct greatly exceed the volume
diffusion.
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