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The picture of the inelastic processes accompanying the inter-
action of a fast hadron with a nucleus is considered under the
assumption that the interaction of two hadrons is described by means
of a pomeron exchange and that the asymptotic total cross sections
are constant in this case,

1. The physical picture of the interaction can be easily understood by starting from the
parton conceptions [1, 2] of the spatial structure of the wave function of a fast hadron of
energy E, namely, its stationary state constitutes in the mean an aggregate of particles
(partons) with energy spectrum de/e (m < € < E) and with bounded transverse momenta; the par-
ticles with energies v € are distributed in a disk of radius ~ v2a'In(E/€) and thickness ™ 1/e.
When such a "comb" of partons is incident on a hadron at rest, then the hadron can interact
only with a slow particle from the comb; after the interaction, which destroys the coherence
of the system, the remaining particles of the comb also become free (after times on the order
of eu~?), with the shape of the de/e spectrum remaining the same. The total cross section o of
this process is determined by the interaction of the slow particles, and therefore o = u=2 (u
is the meson mass).

We apply these conceptions to a nucleus consisting of A nucleons (the radius of the
nucleus is R, the average distance between nucleons is r ~ 1/i, and the nucleon mass is m). It
is convenient to consider the hadron-nucleus interaction in a coordinate system in which the
nucleus has an energy AE and the hadron is at rest. What is the parton state in such a system?
We assume at first that E is relatively small, and then start to increase it. Owing to the
Lorentz contraction, the nucleus flattens gradually with increasing E, and the average longi-
tudinal distances between the nucleons decrease like (r/v3)(m/E), while the average transverse
distances remain unchanged.

Each of the nucleons of the nucleus is accompanied by a comb of partons. How do these
combs interact? We consider two nucleons located a distance [x,, x, ] apart in the rest system
of the nucleus. Obviously, their parton clouds are spatially separated if at least one of the
conditions

x} > 8a’1n(E/m), (m/-E)x, > 1u. (1)
is satisfied. If xj_% 8a'1In(E/M), the regions in which the slow partons are situated begin to
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overlap transversely, and a longitudinal overlap sets in at x, ~ E/mu. When two parton clouds
begin to overlap spatially, coalescence of the combs becomes probable, and with increase of E
the system will evolve as a single parton comb; the probability of such a coalescence tends to
unity with increasing E (see [3]).

Let us increase the energy from E v m to E > Rmu The nucleon combs situated in tubes
with approximate cross sectlon " o begin to coalescel), so that at E v Rmu they join into groups
containing on the average v = AO/Oln(A) N AY/3 nucleons each, where 0ip(A) is the total inelastic
cross section per nucleus (ojp(A) = TR?b, with b < 1 for large A). At E > Rmu, the region in
which the slow ends of the combs are located becomes stabilized in the form of a disk of radius
R and thickness "~ 1/u; with further increase of the energy this region remains practically
unchanged, only the number of slow partons is gradually decreased as a result of the increase
of the Regge radii and the corresponding increase in the number of coalescing combs. The
immobile hadrons on which the nucleus is incident 'sees'' just this disk of slow partons. The
total cross section 0i,(A, ) therefore decreases monotonically:

’ g1
oio{Ar EdvaR2b |1+ 2—':‘—5} y €= In(E/m) (2)

When a slow parton collides with the hadron at E > Rm , particles made up of v v linked
combs are produced in the final state. The total nuclear spectrum is therefore close in shape
to the spectrum produced in the case of interaction of two nuclei of energy E, but the density
of the produced particles is v times larger. This leads to the following expression for the
inclusive cross section at the nucleus and at average multiplicity:

. 83
F(A,p) = v—ﬂ!(—@-f(p) = Af(p), F(A)p)= ¢ -—-:— ’ (3a)
o dp’/A
n (A) =yt = A d n » 3b
Y (30

where £(p) = €(3%0/9p?®) and n are the inclusive cross section and the average multiplicity for
a nucleon-hadron collision at energy E. Of course, (3a) no longer holds in the lower part of
the spectrum, since the hadron collides there with approximately one parton, where F(A, p)
should approach the spectrum per nucleus:

A
F(A,p) = —-0——( )f(p). 4

With further increase of the energy to E >> Rmu, relations (3a) and (4) remain valid near the
end points of the spectrum. In the fast part of the spectrum, the density of the produced par-
ticles increases like v[1 + (20tg/r? )], which is of the order of the number of linked combs, but
the decrease of oj, compensates for this effect, and therefore (3a) holds. Closer to the lower
edge of the spectrum, F(A, p) takes the form (4), for when E >> Rmu the target collides only
with the end of one of the combs. The intermediate region of the spectrum, in which the
coalescence of the combs takes place, becomes longer. The quantity n(A, &) increases like

27a’ . 2na”’
(A £) ~ na éln§+u(1'+ na ?InRu » E>>Rmy , (5)
g g
where Yy v 1 and depends on the probability of the linking of the parton combs (y is connected
with the values of the '"internal' pomeron vertices [3]).

Finally, a few words concerning the region of purely theoretical interest, 20t v R?,
where the Regge radius becomes comparable with the radius of the nucleus and continues to grow
further [4, 1, 3]. We see that in this case there remains in the disk approximately one slow
particle, since almost all A combs have become 11nked and Otot (A, &) becomes of the order of
the nucleon-nucleon cross section. Finally, at alf >> R? there is only one slow comb at the
fast nucleus; in this case the nucleus does not differ in principle in any way, from the point
of view of the target, from a fast nucleon and therefore [3] the total cross section Ogo¢ (A, &)
= 0, and the multiplicity is
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R?
n(A, £) =a(f-A) +aAlnA+aAlnRy, A= N5 »n~l, o="H/& (6)
a

wiere the last two terms correspond to the products of the '"fragmentation" of the nucleus (with-
out nucleons from the disintegration of the nucleus).

The behavior of F(A, &, n, py ) is shown schematically in Fig. 1 (in the coordinate system
in which the nucleus is at rest) as a function of the rapidity n = In(E/m) of the observed par-
ticle.

2. Let us describe briefly how the considered picture can be corroborated more accurately?)
In the reggeon-diagram scheme, the inclusive cross section is obtained from the sum of the con-
tributions of all the diagrams for the (3 =+ 3) amplitude. The most important circumstance in
our case is that the pomeron branch cuts make no contribution to f(p) (see [5]}). Therefore at
small E the only contributions that are not small are those of the diagrams of Fig. 2, in which
the pomeron disintegration vertex Iy lies below the vertex Y(p, ) that describes the emission
of the observable particle (the analogous corrections to g have already been taken into account).
At small n < In(Rm) and arbitrary &, only the diagram of Fig. 2 with £ = 1 (without the pomeron
loops) is the significant; this leads to expression (3a). At large n, when the contributions
with £ > 1 are also not small, F(Z) acquires an additional dependence on n (but not on & and
Py )

F(Avf’ 'l:p_,_) =¢(7” A)f(é’ LA &)’ (7)

where ¢(n}) = A at n < In(Rm), and ¢$(n) ~ R%/2a'n at In(Rm) << 2a'n << R?, so that Eq. (4) holds
at n v §. Further, since the rapidity 8 on the pomerons (see Fig. 2) does not exceed R?/2a!
(since the vertices I'y begin to vanish [3])}, the spectrum goes over at n > (R2/20') into the
spectrum per particle (¢ + 1). We emphasize once more that the dependence of F(A) on n is uni-
versal — the plot of Fig. 1 does not depend on £.

We can analogously obtain the higher inclusive

cross sections. For example, the analog of (3a) for the F(A)
two-particle cross section at €,, €, < In(Rm) is AP
‘fb\,_~_
F,{A,pys py) ~ o7MA)F(p,) F(p,) | At v
(8)
AA -1 fI- tN————
AA-) e c],c,ul‘z ) L ,
2 ah(A) n Rm Rz/2¢7 7

It should be noted that the expressions obtained
in this manner for F(A), F,(A),.... are valid for all Fig. 1
nuclei, not only for large A.

3. Inelastic interactions of the nucleus [A;, Ry, EA,] with
the nucleus [A,, R, mA,] can be considered analogously. At small
E < Rim? (when 0jn(A1, A2) = mb(R, + R,)?) the diagrams with & = 1
are the essential ones for [s(a3o/ap3)]Al,A2 = F(A,, A;). Therefore

A A

—n. 9
71.(A) A, ? ®

F(A, A,;p) =AAf(p); n(AA8)~
When the energy is increased, a dip begins to appear in the central
part of the spectrum, and the density of the produced particles will
tend to the 'single-comb'" value. For arbitrary n and £ we obtain

F{A1' Az;P) =¢(§'7I’ Al,.¢(7lv Az)vf(P)‘: (10)

where ¢(n, A) is the same function as in (7).
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4. In conclusion, we make two remarks. Assume that the spectra of the particles produced
from the nuclei are indeed of the type proposed above. Then the detailed data on the behavior
of these spectra at € 2 Rmu (in the laboratory frame of the nucleus) can yield information on
the character of the linking of the parton combs [3]. We note also that the most important cir-
cumstance in our picture is the fact that the longitudinal distances, which play the important
role in the hadron interactions, incrase like Em™°; this is precisely why the usual cascades do
not develop in the nucleus, and the fast part of the spectrum is not restructured.

The author thanks V. N. Gribov for numerous discussions and hints, and V. A. Abramovskii,
E. V. Gedalin, I. D. Mandzhavidze, S. G. Matinyan, and K. A. Martirosyan for interest in the
work.

1At small E, of course, the parton picture is quite arbitrary. In addition, the parton
comb probably broadens in space near the slow end (1/u, and not 1/m) owing to the interaction
with the vacuum fluctuations. This can also lead to a certain "delay" and coalescence of the
combs, and to a longitudinal stabilization of the slow partons of the nucuels at E 2Rm2, and
not at E ~ 2Rmu.
A more detailed exposition will be published elsewhere.
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As shown by Sondheimer [1] some time ago, the conductivity of thin films in external mag-
netic fields oscillates as a function of the parameter B = d/ry, where d is the characteristic
transverse dimension of the sample and ryg is the radius of curvature of the electron trajectory
in the magnetic field. It is natural to expect analogous oscillations to be experienced also by
other kinetic coefficients, particularly the thermoelectric and thermomagnetic ones. The latter,
however, are determined in semiconductors and semimetals at low temperatures mainly by the
dragging of the electrons by phonons, thus distinguishing them from the picture considered by
Sondheimer. It is shown in the present paper that even in the absence of dragging the Sond-
heimer oscillations of the Nernst constant can be so large that this constant can alternate in
sign. The dragging effect, however, can increase the amplitude of these oscillations by several
orders of magnitude.

We consider an isotropic sample in the form of a plane-parallel plate of thickness d,
bounded in the z direction and infinite along the axes x and y. The magnetic field is directed
along the z axis and the temperature gradient along x. The kinetic equations for the electrons
and phonons in the presence of a magnetic field and a temperature gradient are

afl E 1 vV _f° fl
P+ Z4E + —[veHWV £ + ( 'P)=_ P +51H°,F1;, (1
dz- V.| [ PP v rpvz q
z
oF!  Fjw)
SE-HVT————&T =1{F 1, (2)
where
— 1 1 _ - 1
o=ty tfy, £ =(v,¥ +v ¥) F =F°+F_.
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