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It is established that crossed fields should induce in helium II superfluid
currents of velocity v, =aE X H/mc (a is the polarizability of the
helium atom and M is its mass).

PACS numbers: 67.40. —w

The purpose of the present paper is to show that properties traditionally assumed
to be possessed only by superconductors should be observed also in superfluid systems.
We consider, for the sake of argument He* and examine the behavior of an He* atom in
a combined electric and magnetic field. The electric field polarizes the atom and as a
result the center of gravity r, of the electron cloud does not coincide with the center of
gravity r, of the nucleus. If we denote by U the interaction energy of the electrons with
the nucleus, then in the classical description the equations of motions obviously take
the form:
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These equations describe both internal motions in the atom (i.e., the time variation of
the difference r=r, — r,) and the motion of the atom as a unit [i.e., the change of the
quantity R=mr, + m,r,/(m, + m,)]. If the frequencies of the fields E and H are much
less than the characteristic frequencies of the internal motion, then it follows from (1)
and (2) that r varies quasistatically, i.e.,
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Here a is the polarizability of the helium atom, and E and H are functions of the
coordinate R. The appearance of the second term in the right-hand side of (3) is due to
the fact that the Lorentz force also polarizes the atom. With the aid of (3) and Max-
well’s equations it is easy to obtain from (1) and (2) the equation of motion of the mass
center R. If we put R =v and m, + m, = M, then the equation takes the form
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Let us examine this equation. Assume that a homogeneous field E is applied first, after
which a homogeneous magnetic field H is turned on. Turning on the field H, by virtue
of Maxwell’s equations, produces inhomogeneous electric fields. These, however, are
proportional to 1/c, so that the right-hand side of (4) is proportional to 1/¢* and can be
omitted. Integrating the remaining equations and setting the integration constant
equal to zero (in accord with the fact that in the absence of fields the atom has zero
velocity), we get :

ExH
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The physical reason why a neutral body *“gathers” a velocity — u is the following. In
the switching stage, either the field E or the Lorentz force (e/c) RXH is inhomoge-
neous. Therefore, although the forces acting on the gravity center of a negative charge
r, and on the gravity center r, of a positive charge are of opposite sign, they do not
cancel each other. The resultant force moves the atom as a whole, and its action, as
seen from (5), does not depend on the rate at which the fields are turned on.

We have dealt so far with a single atom. It is quite obvious to ascertain what
happens if the atom is some singled-out particle in a liquid. If the liquid is normal,
then, in view of the presence of viscosity, the liquid velocity vanishes as t—oo. If,
however, the liquid is superfluid, then even as t— 0 the liquid velocity is given by (5).

This statement can be proved more rigorously. The Lagrange function corre-
sponding to Eq. (4) is

Mo? E? / E
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since it is obvious that substitution of (6) in the Lagrange equation
(d /dt)(AL /dv)) = (L /IR )) leads to (4). With the aid of the Lagrangian we can obtain
in the usual manner the generalized momentum p and the system Hamiltonian H (p,R)
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The Hamiltonian (7) can be used to describe the condensate in He 11, after first replac-
ing in it the momentum p by the operator — i#iy7. We assume to this end (see, e.g.,'''?)
that the behavior of the capacitor is determined by the wave function
Y(r,t ) = tho(re ) explig (rt)], which satisfies the Schrodinger equation (u is the chemical
potential)

LA ®
Jt

i = ™

c

The wave function ¢ is so normalized that My 2=p _, where p, is the mass density of
the superfluid component. Separating the imaginary part in Eq. (8), we obtain the
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continuity equation
ﬁs + divp v, =0, ©)]

where the velocity of the superfluid component is

3
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The real part of (9) is given by
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We have left out of the right-hand side of this equation the term

(#/2M )V[(VZ\/pS/\/ P )], which is significant only if superfluid density varies
very rapidly as a function of the coordinates.

Hell

FIG. 1.

We shall show that in the case of a metallic vessel of arbitrary shape (see Fig. 1),
neglecting the compressibility of the helium, v, = — u is a solution of the system (9)-
(11). In fact, for an incompressible liquid v, should satisfy the equation div v, = 0 with
boundary condition v, = 0, where v, is the velocity component normal to the surface.
If v, = — u, then the conditions div u = 0 and u, = 0 should obviously be satisfied. It
is easy to find with the aid of Maxwell’s equations that div u=(a/Mc)div
HXE = (a/Mc)(1/rc)(0/9t E* + H?). Consequently, after the fields reach their sta-
tionary values we have div u = 0. The condition u, = 0 on the surface of a metallic
vessel is also satisfied, since E is directed normal to the surface of the vessel, and
uE = (¢/Mc)(H X E)E=0. Thus, we have again arrived at the result (5). Allowance for

the compressibility effects leads to the appearance in the inhomogeneous cases of weak
gradients of the phase /¢ [see (10)].

105 JETP Lett., Vol. 28, No. 3, 5 August 1978 S.1. Shevchenko 105



Expression (5) admits of a simple interpretation , by which this result can be
obtained in a perfectly clear manner. The helium II polarized by the homogeneogs
electric field is, in a certain sense, the analog of a superconducting layered crystal in

" 00000000—r ..

@H Polarized He atoms

which layers having »n- and p-type conductivity alternate (see Fig. 2). When such a
crystal is placed in a magnetic field, a Meissner current should be produced in each
layer. Since the particles of the neighboring layers are pairwise coupled, the total
current is determined by the difference of the Meissner currents in the upper and lower
layers (see"*"). The velocity of the liquid should therefore be [see (2)]

e(4,-4,) edH aEH
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which coincides with expression (5).

We present a numerical estimate of the velocity ». The polarizability of the heli-
um atom is @ =~2X 10" cm® and the mass is M = 10%g. Therefore in fields H~10° G
and E~10° V/cm we have u=2X10"* cm/sec. This is a low but quite measurable
quantity.

The described experiment in crossed fields is not the only situation in which the
predicted effect can arise. If charged particles are introduced into helium II, then
turning on the magnetic field should produce around each of them a spindle-shaped
vortex whose velocity is given by (5). The projection of the vortex velocity on a plane
normal to the magnetic field is

aH Q .
v, =-F:l-:-—1?z sin 6.

Here Q is the particle charge,.R is the distance from the charge to the point in
question, and & the angle reckoned from the magnetic field. One of the possible ways
of detecting the predicted vortices is to produce a stream of the superfluid component.
The vortices (together with the charges) will then be acted on by a Magnus force, and
the charge should be set in motion. This and other questions are considered in detail in
our paper submitted to Fizika Nizikikh Temperatur (Low Temperature Physics).

We note in conclusion that the described effects should hold also in other super-
fluid systems, particularly superfluid He’.

I take the opportunity to express deep gratitude to A.F. Andreev, 1.0. Kulik, and
Yu.A. Nepmnyashchii for useful discussions and advice. |
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