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WKB-approximation formulas are obtained for the Dirac equation for a
strong external field (¢,>2m,c?, where ¢, is the electron binding
energy). These formulas are used to calculate the energy and width of the
quasistationary states in the lower continuum and to determine the pre-
exponential factor in the probability of the spontaneous positron creation.
Other applications of the WKB method are briefly discussed.

PACS numbers: 31.15.+q

In connection with the experimental observation'” of the positrons created in
slow (v 50.1¢) collisions of heavy nuclei, such as Pb+Pb, Pb+ U, and U+ U, it be-
comes urgent to calculate this process in detail, and this calls for solving the Dirac
equation for the two-center problem. Since the variables do not separate in this case,
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this problem has no analytic solution, and the numerical calculations are quite un-
wieldy and have been performed only in the sub critical region where R>R > —1
(see>™; we put hereafter fi=c=m,_,=1, € is the energy of the level in m ,c? units, R is
the distance between the nuclei, y= F(j+31); in particular k= —1 for the ground
level). It is therefore necessary to resort to approximate methods. It is natural to
consider the WKB method, which has high accuracy in the case of a Coulomb field
even for small quantum numbers.

The application of the WKB method to a strong (Z > 137) Coulomb field was
based earlier'**! on a squaring of the Dirac equation (the effective-potential meth-
od'“™). At € < —1, however, the substitution y(r)=(14+€—V)"?G(r) used in that
method becomes singular at the point r=r,, where V' (r))=€+ 1. Consequently the
usual quasiclassical formulas become meaningless at r~r, because of the divergence of
the integral f’pdr. We have succeeded in overcoming this difficulty by expanding in
powers of # in the initial Dirac system for the radial wave functions G and F. The
expansion in powers of # leads to a chain of matrix differential equations that are
solved in succession with the aid of the left and right eigenvectors of the homogeneous
system, calculated in explicit form. We present the final formulas for the wave func-
tion of the quasistationary state with energy € < —1. These formulas have different
forms in three regions: I) 7, < r < r_; II) the sub-barrier region r_ < r < #.; l1I) > r.. Here
r. and r, are turning points in which the quasiclassical momentum

p(r)=[(e=V(r))P-1-k2r-2% "

vanishes (see Fig. 1). At r,<r <r- we have:
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FIG. 1. Effective potential U(r,e) for states with e<—1.
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where
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If the level width y <1 (this is verified by the results), we must put
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where T is the period of the oscillations of a classical particle localized in region I. In
the sub-barrier region, the solution corresponding to a damped exponential takes at
x <0 the form

-~ % r Ve
C = _If___e___l_.F’ F = B(—Q—> exp -—[( - v———)dr )]
Q 9 PN 200" )

and for states with x>0

¢ =B’<—Q-)exp - < V'Q)dr, po V=t @)
q r 2q 0

Here g=[p(r)] and Q=g+k}r'. At r>r. the quasistationary state corresponds to a
diverging wave; the formulas for G and F are similar to (4) and (4"). To go around the
turning points we can use the Zwaan method, which joins together the solution and
establishes the connection between the normalized constants. Expression (2) and (4)
differ substantially from the usual quasiclassical formulas. As expected, the point r=r,
is not singular for correct quasiclassical formulas, since g(r) and Q () are positive at
[ RIZIN
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The obtained formulas allow us to solve a large number of problems in the theory
of supercritical atoms. Thus, (2) leads to the quantization rule

- K W) 1
f(rp+ >dr = n+—>" ., n=0,1,2.. (5)
ro pl‘ 2
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which determines the real part of the level energy. It differs from the usual Bohr-
Sommerfeld quantization condition by the relativistic expression for the momentum
p(r) and by inclusion of a correction, proportional to w,(r), which takes the spin-orbit
interaction into account and leads to splitting of levels with unequal signs of «. By
calculating the particle flux as »— 0, we obtain the level width ¥ (i.e., the spontane-
ous-positron-production probability):

r

+
v(es k) =y,expl -2 [ qfr)dr { (6)
r—
where
1 T+ w,y
Y, = —— €xp 2k §— dr (6"
T , qr

(the last integral is taken in the sense of the principal value). In the case of a Coulomb
field V (r)= —4/r we obtain
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FIG. 2. Energy of the ground level 1so vs. the dis-
tance R between the colliding nuclei (Z=2Z,+Z,).
-Jr Z =137 for curve 1 and Z/2=92 and 100 for curves 2
and 3.
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where {=Z¢?, p=ki{'(0<p < 1), and k=\/€2—1 is the positron momentum,
P p
3 1

c = c =

o ‘ = T
2@+ p)Vl-p? 2¢V1 -5

The exponential factor in (7) was obtained earlier."” We note that the pre-expo-
nential factor ¥, depends substantially on the momentum k, a fact that must be taken
into account when the theory is compared with experiment.

The application of the WKB method to the problem of two centers with charges
Z, and Z, yields a simple approximate equation of the level energy e=€e(R,{,«):

R 1 1 -2« -t
RO

which is plotted in Fig. 2. Here {=(Z,+Z,)/137,

& (x) = exp l[(1+ac) lml+x) —(1l-x)ln(l-x)]-1
2x

5\/(e + 1)2 % 1 -2«
x = (1—p2)[€2—1+<K—T><——— 1-(1+ 4(2 (e+l)> .

4-2

)

In particular, the slope of the level at the boundary of the lower continuum is
described by the formula

R -1
e=-1+B(———l)+,,,, B=_§._ 14+ 4‘K2—6K+3) ©)
Rcr 2 842

(the critical distance R, was calculated in>).

By way of further applications of the WKB method to the theory of supercritical
atoms we point out the following problems: 1) calculation of the screening effect, i.e.,
the calculation of R, for a quasimolecule (Z,, Z,, e) surrounded by outer electron
shells; 2) allowance for the finite velocity of the nuclei; 3) the angular distribution of
the emitted positrons (which reduces to the problem of tunneling of a particle with
nonzero angular momentum through a potential barrier with low nonsphericity). The
use of the WKB method yields solutions in closed form and obeviates the need for
cumbersome numerical computations.

The authors thank V.L. Eletskii and M.S. Marinov for useful discussions in the
course of the work.
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