Spectra of impurity complexes of the type H⁻-H⁺ and pseudocrossings of molecular terms in semiconductors

V. N. Aleksandrov, E. M. Gershenzon, V. A. Zayats,¹⁾ A. P. Mel'nikov, R. I. Rabinovich, N. A. Serebryakova, and Yu. V. Tovmach¹⁾

Moscow State Pedagogical Institute (Submitted 3 July 1978) Pis'ma Zh. Eksp. Teor. Fiz. 28, No. 4, 226–230 (20 August 1978)

It is shown that impurity complexes of the type H⁻-H⁺, whose optical spectrum reveals pseudocrossings of the ionic and homopolar terms, are produced in semiconductors at low temperatures and under impurity excitation as a result of the hopping of the "extra" carrier over the neutral centers in the direction of the attracting center.

PACS numbers: 71.55.Dp, 72.40. + w

Recent spectral measurements of semiconductors have revealed analogs of the negative hydrogen ion H^- (negative donors D^- and positive acceptors A^+) as well as impurity molecular complexes of the type H_2^+ and H_2 , with characteristic distances

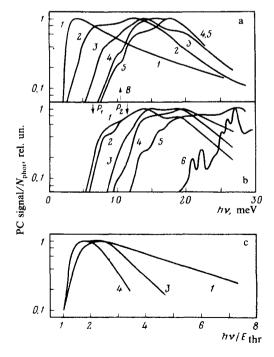


FIG. 1. Photoconductivity spectra: a) Si:B at T = 2 K with N, cm⁻³: $1-8\times10^{13}$; $2-8\times10^{15}$; $3-2\times10^{16}$; $4-6\times10^{16}$; $5-10^{17}$; b)—Si:P with $N = 9\times10^{16}$ cm⁻³ at various T, K:1—2; 2—3.2; 3—4.8; 4—6.8; 5—8; 6—15; c) photoconductivity spectra of Fig. 1a plotted in the hv/E_{thr} scale.

between "nuclei" (impurities) that differ generally speaking from the mean value $R_c = (4\pi N/3)^{-1/3}$, where N is the concentration of the impurities (see Ref. 1 and the literature therein). The impurity molecules of type H_2 were observed only in the ground state. It is shown below that in semiconductors there can exist one other impurity complex—the analog of the molecules H_2 in the ionic state H^--H^+ .

The assumption that such complexes can be produced was advanced by us in Ref. 2 to explain the increase of the energy of photodetachement of electrons $(E_{\rm ph})$ from H-like centers, observed with increasing $N^{.12-41}$ In Refs. 3 and 4, however, this effect is attributed to a manifestation of complexes of the H_2^- type or of the upper Hubbard band. In the present paper we investigate the conditions for the formation of H-H⁺ complexes and the spectral features that characterize them and are due to the pseudocrossing of the terms. It is shown that the presence of H-H⁺ complexes explains also the experimental data of Refs. 3 and 4.

The photoconductivity (PC) spectra of Si:B and Si:P spectra with $N=10^{14}-10^{17}$ cm⁻³ and with compensation $K \le 0.01$ were investigated with the aid of a Grubb Parsons Fourier spectrometer MK-3 at T=1.5-20 K under background illumination conditions. Figures 1a and 1b show typical spectra at different N and T. At $N>10^{15}$ cm⁻³, a structure of several broad peaks appears in the spectra; with increasing N and T, the shorter-wavelength peaks increase relatively. Figure 1c shows some of the spectra of Fig. 1a in $h\nu/E_{\rm thr}$ scale ($E_{\rm thr}$ is the energy of the photoconductivity threshold, assumed to be equal to the radiation energy corresponding to 0.1 of the maximum photoconductivity signal). It is seen that with increasing $E_{\rm thr}$ the spectrum of the photoconductivity becomes relatively narrower, and the short-wave edge becomes steeper. Figure 2

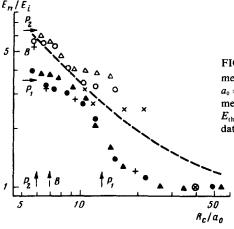


FIG. 2. Plots of $E_{\rm thr}/E_i$ against R_c/a_0 for Si:B ($E_i=2$ meV, $a_0=23$ Å) at T, K: \triangle —2, Δ —6; Si:P ($E_i=1.8$ meV, $a_0=20$ Å) at T, K: \bullet , +—2, °—6 and Ge:Sb ($E_i=0.62$ meV, $a_0=43$ Å) at T, K: °—0.38, ×—1.5. The values of $E_{\rm thr}/E_i$ for Si:P (+) and for Ge:Sb were obtained from the data of Refs. 3, 4, and 8.

shows plots of $E_{\rm thr}/E_i$ against R_c/a_0 (a_0 is the radius of the neutral impurity, E_i is the binding energy of the extra electron for the isolated H⁻-like center), while Fig. 3 shows plots of $E_{\rm thr}(T)$. We note that a weakening of the $E_{\rm thr}$ dependence on N and T is observed at the characteristic values of $E_{\rm thr}$ determined by the form of the impurity.

The results can be explained with the aid of the following models, using an *n*-type semiconductor as an example. At $K \le 1$ and $N_D \le N_{D^0}$, $N_D \le N_{D^0}$, and $N_A \le N_{D^0}$ for

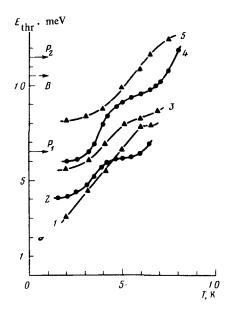


FIG. 3. Plots of $E_{\rm thr}(T)$ for Si:B (\triangle) and Si:P (\bullet) at the following values of $N({\rm cm}^{-3})$: $1-8\times10^{16}$; $2-2\times10^{16}$; $3-2\times10^{16}$; $4-9\times10^{16}$; $5-10^{17}$.

donors D° in a sphere of radius $R_{\cdot} \approx R_{-}$ away from the nearest D^{+} or A^{-} center, we have $E_{\rm ph} > E_{i}$ and $E_{\rm ph} < E_{i}$, respectively $(R_{\cdot} \approx N_{D^{\cdot}}^{-1/3} \gg N_{D^{\circ}}^{-1/3} \approx R_{c})$. For the remaining (and most) donors we have $E_{\rm ph} \approx E_{i}$. The "extra" electrons captured on the D^{-} levels can hop over the neutral centers to the nearest D^{+} center and emit acoustic phonons, with a probability $W_{h} \sim \exp(-\alpha R_{c}/a_{-})$, where $\alpha \approx 1$ and a_{-} is the radius of the D^{-} center. In addition, the D^{-} centers become thermally depleted with a probability $W_{T} \sim \exp(-E_{\rm ph}/kT)$. At $W_{h} \gg W_{T}$, the D^{-} centers "approach" the D^{+} centers. As a result are produced $D^{-}-D^{+}$ complexes (analogous to the molecule H_{2} in the ionic state $H^{-}-H^{+}$ with distances R < R, between nuclei and with

$$E_{\rm ph}(R) = E_i + e^2/\kappa R , \qquad (1)$$

where e is the electron charge and κ is the dielectric constant. With increasing N and T, the values of W_h and W_T increase and accordingly an increase takes place in the relative numbers of the D^-D^+ complexes with $R \leq R_c \ll R$, and $E_{\rm ph} \gtrsim E_c \equiv E_i + e^2 \kappa R_c$, and this leads to a shift of the long-wave PC boundary on Figs. 1a and 1b. At the same time, a change should occur in the frequency dependence of the cross section $\sigma(h\nu,R)$ of photodetachment of the electrons from the complex D^-D^+ , and this leads to a shrinking of the photoconductivity spectra, Fig. 1c. Our calculation shows that $\sigma(h\nu,R)$ differs substantially from $\sigma(h\nu,\infty)$ of an isolated center already at $R/a_0 \leq 30^{-161}$: the position of the maximum almost coincides with the threshold, $h\nu_{\rm max} = (1.1-1.2)~E_{\rm thr}$, and the short-wave edge falls off more rapidly.

The validity of the development model is confirmed by the presence of a structure in the spectra of Figs. 1a and 1b, and by the deviation of the function $E_{\text{thr}}/E_i(R_c/a_0)$ from the Coulomb relation (1) at the characteristic values of E_{thr} (the Coulomb dependence)

dence is shown in Fig. 2 by the dashed line). In our opinion, these facts are a manifestation of the pseudocrossings of the ionic and homopolar terms, which are known for molecular systems^{15,71} (the electron is in the ground state on one atom and in the excited state on the other), which occur at $R = R_{r}$, when the values of E_{r} coincide with the energies of the excited states of the impurity atoms. From qualitative considerations⁽⁷⁾ and from variational calculations⁽⁵⁾ it follows that in a region ΔR_{\star} near R_{\star} the $E_{\rm ph}(R)$ dependence is weak, the density of states g(E) has a maximum, and the dimension of the region ΔR_x increases with decreasing R_x . The arrows in Figs. 1a, 1b, 2, and 3 mark the positions of the corresponding impurity (atomic) levels of phosphorus (P₁ and P₂) and of boron (B) in silicon, and in Fig. 2 they mark also the values $R_c = R_x$ at which pseudocrossings with the corresponding levels should take place. It is seen that at $7 < R_c/a_0 < 20(E_{thr}/E_i < 6)$ the position of the singularities in the photoconductivity spectra correlates with the energy of impurity atomic levels, and the calculated and experimental values of R_{\bullet}/a_0 , corresponding to the pseudocrossings, are in agreement. The plateau observed on the plots of $E_{thr}(R_c)$ and $E_{thr}(T)$ for Si:P $(E_{\rm thr}=9.5~{\rm meV})$ and 5.8 meV) and for Si:B $(E_{\rm thr}=8~{\rm meV})$ correspond to the levels $2p_0$ $(E=11.5 \text{ meV}), 2_{p+}(E=6.4 \text{ meV}), \text{ and } 2\Gamma_8^- (E=10.5 \text{ meV}).$

The temperature region in which the corresponding effects exist likewise does not contradict the developed model: at T > 10 K the complexes $D^- - D^+$ are thermally destroyed and only the lines of photothermal ionization of the electrons from the triplet to the doublet levels of the 1s states are observed at hv < 30 meV in the photoconductivity spectra.^[9]

We note in conclusion that the presence of the complexes D^--D^+ explains also the results of Refs. 3 and 4 (some of which have been used in Fig. 2), as well as the data on the change of the form of the photoconductivity spectrum and of $E_{\rm thr}$ under uniaxial compression^[4]: the compression decreases the overlap of the anisotropic wave functions of the D^- states, the hopping probability W_h , ^[10] and the fraction of the D^- centers with $E_{\rm ph} > E_{i}$.

¹⁾P.N. Lebedev Physics Institute, USSR Academy of Sciences.

¹E.M. Gershenzon, Usp. Fiz. Nauk 122, 164 (1977) [Sov. Phys. Usp. 20, 456 (1977)]; K.K. Bajaj, I.R. Birch et al., J. Phys. C 8, 530 (1975); I. Golka, J. Phys. C 7, L407 (1974).

²V.N. Aleksandrov, E.M. Gershenzon, A.P. Mel'nikov, R.I. Rabinovich, and N.A. Serebryakova, Pis'ma Zh. Eksp. Teor. Fiz. 22, 573 (1975) [JETP Lett. 22, 282 (1975)].

³P. Norton, J. Appl. Phys. 47, 308 (1976); Phys. Rev. Lett. 37, 164 (1976).

⁴M. Taniguchi, M. Hirano, and S. Narita, Phys. Rev. Lett. 35, 1095 (1975); S. Narita and M. Taniguchi, Phys. Rev. Lett. 36, 913 (1976).

⁵W. Kolos, J. Mol. Spectrosc. **62**, 429 (1976).

⁶B.H. Armstrong, Phys. Rev. 131, 1132 (1963).

⁷E.E. Nikitin and B.M. Smirnov, Usp. Fiz. Nauk 124, 201 (1978) [Sov. Phys. Usp. 21, 95 (1978)].

⁸M. Taniguchi and S. Narita, J. Phys. Soc. Jpn. 43, 1262 (1977).

⁹R.L. Aggarwal, Solid State Commun. 2, 163 (1964).

¹⁰B.I. Shklovskiĭ, Fiz. Tekh. Poluprovodn. 6, 1197 (1972) [Sov. Phys. Semicond. 6, 1053 (1973)].