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The spectral representation is obtained for the exact Lagrange function of
a constant electromagnetic field.
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The structure of quantum electrodynamics (QED) at short distances is deter-
mined usually by the behavior of the photon propagator at large values of the momen-
tum squared."” The renormalizability connects the asymptotic properties of the prop-
agator with the behavior of the Gell-Mann-Low function, by incorporating the
principal properties of QED. Owing to the universality of the electromagnetic interac-
tion, the radiation action of the electrons via the quantized electromagnetic field can
be introduced in QED by functionally differentiating, with respect to the external
field, amplitudes that take into account only the electron interaction with the external
field (see, e.g., Ref. 3). Therefore the dependence of the quantum-electrodynamic
quantities on the external field is of fundamental interest. It is shown in Refs. 46 that
the exact Lagrangian of the electromagnetic field in the region of a strong field con-
tains the same information on QED as the exact photon propagator at large values of
the momentum squared, and determines the corresponding Gell-Mann-Low function.

The study of the properties of the photon propagator is made easy by the fact that
we have for this propagator the Kallen-Lehmann dispersion representation.” In this
paper we obtain an analogous representation for the Lagrangian .¥ of a constant field;
the spectral function in this representation is the imaginary part of the Lagrangian,
which is a positive measurable physical quantity, since 2 Im.# is the probability of
pair and photon production by the field per unit volume and per unit time. This
representation is
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Here € and 7 are the electric and magnetic fields in the system where they are parallel,
(ae’/2)g(m*/ee,p/€) = Im.ZL is the imaginary part of the Lagrange function and dif-
fers from zero only at €20. Both ., and g, depend also on the fine-structure constant
a. In the second integral, g is connected with Im.# by means of the permutation e=.

The derivation of the dispersion relation (1) is based on the existence and proper-
ties of the proper-time representation
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for the nonlinear correction to the Lagrangian function . of the Maxwellian field.

For the Heisengberg—Euler correction™® of order a
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and does not depend on the mass variable m2x. For the correction ~a?, obtained by
one of us,"”
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and depends on m?x=z linearly and logarithmically; the symbols L, S, etc. are defined
in Ref. 4, with s = (1 — &)x, 5" = &x. The function f*’ follows from formula (50) of
Ref. 4 after the latter is symmetrized with respect to s and s'. The structure of the
functions £V, f‘*’ in scalar electrodynamics is analogous, see Refs. 9 and 6.

As seen from (3) and (4), the function f=f‘'’ + £ ‘" has the following properties:
1) fis analytic in z = m?x in the lower half of the complex z plane and is here a slowly
growing function of iz Iniz. The same applies to m? if x is real and positive. 2) Because
of the symmetry 7= — ie, the singularities of f with respect to the field variable eFx
are arranged symmetrically in the complex x plane on the real and imaginary axes
(magnetic and electric singularities), and the nearest of them at the points
x = + m/en, + im/e€ serve as the starting points of the corresponding logarithmic
cuts. At the point x = 0, f has a logarithmic singularity with respect to the variable
m?x with a cut taken along the half-axis arg(m?x) = 7/2. The contour of integration in
(2) can be drawn in the sector — 7/2 < argx <0. 3) f'is real and analytic on the section
(0, — 7i/e€) of the imaginary x axis, and therefore satisfies the Riemann-Schwarz
symmetry principle
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f(m?x, eFx) = f*(- m?x* - eFx*) 5)

for the points x and — x* which are symmetrical about the imaginary axis. 4) f is
invariant with respect to the reversal of the sign of the field, F— — F, to the reflection
€— — €, 7—7, and the transformation < — ie.

By virtue of the property 1, the integral (2) as a function of m? has Laplace-
transformation properties, i.e., it is an analytic function in the lower half of the com-
plex m? plane and tends to zero as |m?|— . It is therefore possible to apply to it the
Cauchy formula, which leads, together with the properties 2-4, to the dispersion re-
presentation (1).

The described properties of the representation (2), and hence of representation
(1), should be valid in all orders in a, since they reflect the general physical properties
of the Lagrange function. Thus, the existence of the Laplace representation (2) itself
with respect to the proper time x is due to the causality of the propagation functions,
as a result of which .% is analytic in m? in the region Imm? < 0. The existence on the
imaginary x axis of a segment (0, — iw/e€) where fis analytic and real is due to the fact
that .Z is independent of radiative corrections in the weak-field limit: Re.¥” should be
Maxwellian, and Im.# should have an essential singularity

).

determined by the physical mass of the electron."® From this and from property 4 it
follows that near x = 0 the function f(z,eFx) has a structure of the form (eFx)* (a
polynomial of iz and Iniz), so that in the case of a weak field the deviation of Re.?
from a Maxwellian function is of fourth order in the field. Similarly, in a weak field
Im.Z behaves like (6), since the dependence on m? which is contained in £, drops out
of Im.Z effectively as eem™—0, owing to the cancellation of the contributions of the
pole and of the logarithmic branch point with respect to variable eFx at the point
x = — im/ee."*® Finally, the Riemann-Schwarz principle, which connect f for two
directions of the proper time, is equivalent to the QED symmetry under time reversal.

The obtained representation (1) has the symmetry 7<= — ie. In the asymmetric
strong-field limit, when €/7 or n/e—0, we obtain from (1) the connection
&L = 2L'VZ, with the constant

2a °°dx
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i.e., the exact Lagrange function is Maxwellian. In finite QED, Z; should be finite,
positive, and independent of the value of the second argument of the function g, since
the limiting interaction constant a. = Z ;” ' must not depend on the method whereby
the field tends to infinity.”* In other words, in finite QED the exact Lagrange func-
tion should be Maxwellian in the strong-field limit regardless of the ratio of the electric
and magnetic fields.
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