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A nonlinear three-dimensional Schrodinger equation describing the
evolution of the amplitude of a helicon packet propagating along a
constant magnetic field is obtained. It is shown that dispersion and
nonlinear effects lead to three-dimensional localization of the helicons.

PACS numbers: 52.35.Hr

Helicons are electromagnetic plasma oscillations in the frequency range
@ p; < <w .0 p, and are frequently observed in the form of noise in radio signals.! This
noise is repetitive in form, and this indicates that the helicons have a tendency to
become self-localized and to form stationary soliton packets. Helicons can be easily
excited in a plasma by beams of high-energy electrons propagating along or across the
magnetic field,” so that such waves can possibly build up in a laboratory plasma,
including thermonuclear research installations. The self-localization ability is an im-
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portant property, since it makes possible the accumulation of a large amount of wave
energy, even when the instability region and the growth rate are small.

We assume that the helicon packet has a principal wave number k, directed along
a constant magnetic field (k,||B,||2), and that this number can be much larger than the
width of the packet in the wave-number space. We consider wave packets that have
sufficiently small dimensions in coordinate space. The decay of a helicon wave into
two helicons with lower frequency can therefore be neglected, since the group veloci-
ties of these waves are different and they cannot interact with each other for sufficient-
ly long time in a three-dimensional packet. The main nonlinear effect in our case is the
action of the high-frequency pressure of the packet on the plasma, which leads to the
formation of density walls and of a magnetic field in the region of localization of the
packet, and which moves together with the packet. As will be seen below, these walls
hinder the spreading of the packet. To find the parameters of these walls, we use the
magnetohydrodynamic equations averaged over the fundamental frequency of the
packet.

Assuming that there are two types of motion in the system, high-frequency and
low-frequency, we represent the magnetic field and the particle density and velocity in
the form

B=B +B +B,; n=n_+n

V=V, +V nH
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where B,,n,,v, and B,,n,,v, are respectively the high- and low-frequency perturbations.

After substituting the representations (1) in the magnetohydrodynamic equations
and averaging over the fundamental frequency of the packet we get
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The angle brackets denote here averaging over the fast oscillations, and (C> (¢, (D>
are the contributions of the high-frequency quantities to the corresponding low-fre-
quency equations. Combining the z-component of Egs. (2) and (4), we can obtain an
expression for d (divv,)/dr. Next, taking the derivative of (4) with respect to time and
substituting in it the expression for d (divv,)/dt, we obtain
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The equation for the high-frequency oscillations of the magnetic field is obtained
from the dispersion relation of the helicons:

2
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The notation here and below is standard. We separate from B, the principal number,
i.e., we represent it in the form
2
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Here w, is the fundamental frequency of the packet and b is a dimensionless amplitude

that depends little on z, r,, or ¢.

Taking into account the representation (8) and the fact that in the linear approxi-
mation the following conditions are satisfied in a helicon propagating along the mag-
netic field

ny = 0; ', = 0; B 1 = 0

we can neglect the last two terms in (5), and <{C, ) takes the form
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Introducing the group velocity of the packet V, = 2c’w g ko/w%, which corre-
sponds to the wave number k,, we can assume that all the numerically varying quanti-
ties depend on the coordinates and the time in the following manner:

b=b(z=Vyr,r ,t)=b(&, 1, t), (10)

where the dependence on the last argument is much weaker than the dependence on
the time, which enters in the first argument. Taking (9), (10), and the foregoing into
account, relation (5) becomes
n 2z
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With allowance for (8), (9), (11), we get from (7) ultimately
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We have thus obtained the equation for slow evolution of the amplitude of a
helicon wave packet with a carrier wave number k, and a carrier frequency a,, in a
coordinate system that moves with the group velocity of the wave. It is seen from (12)
that this evolution is due to dispersion and to high-frequency pressure. Equation (12)
is the well known nonlinear Schrodinger equation. It was shown in Ref. 3 that three-
dimensional soliton solutions of (12) are unstable, but since the growth rate of this
instability is small (it is proportional to the square of the soliton amplitude), the
helicon turbulence will exist mainly in the form of a cluster of such solitons. It is this
which explains the frequent recurrence in the form of helicon noise (“whistlers”) in the
ionosphere.

We now obtain the equation for the soliton solution (12). To this end we put-
b = Af (p)exp(id *7). Here p, 7, and A4 are the dimensionless radius, time, and ampli-
tude, respectively, p = Ak £? + 2r7)"%; 1 = w.t. For f(p) we get

1
= _6_(p2_<2L)=f_f5,
p? dp dp
This equation has a soliton solution with amplitude and characteristic dimensions of
the order of unity. From this we obtain a connection that might be verified in experi-
ment between the parameters of the helicon soliton. The duration of the passage is of
the order of
B / W p; -1
("l‘ & “’Bi)

B ®

(<] g
i.e., it is inversely proportional to the amplitude divided by the square root of the
carrier frequency of the packet.
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