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WKB METHOD FOR A STRONG COULOMB FIELD

V.P. Krainov
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As is well known, the WKB method for the Schrodinger equation with a Cou-
lumb potential leads to terms that coincide with the exact solution for all
quantum numbers. The same holds true for the Dirac equation at Z < 137. On
this basis it has been proposed (and confirmed by calculation) that for Z > 137
the electronic terms are well described by the WKB approximation for all quan-
tum numbers.

Greatest interest attaches to the behavior of the lowest level 1si/2,
which is the first to reach the boundary of the lower continuum with increasing
Z. To exclude striking the center, the nucleus was assumed to be finite
(radius R << 1) and having a constant potential. The WKB method was used to
find the term 1s /. in a field V = -o/r at R > R and V = -a/R at r < R. Here
o = Z/137. The Dirac equation for the radial function G(r) was transformed to
the self-adjoint form ¢"™ + k?¢ = 0 by means of the substitution G(r) =
[1+ e - V(r)]/2¢(r), with

k2 = -1+ 2¢a/r +a/r? Vot s
3 (1)
-—:{r'2[1+r(1+e)/a]"2 3 /\

when r > R and k2 = (¢ + o/R)¥ - 1 when r < R.
A system with units h = m = c¢c = 1 1s used
throughout. In order to satisfy the WKB con-
dition at small values of r, the Langer cor-
rection -1/4r-% [1] was added to (1). We as-
sume first € = -1 and find the connection be-
tween Zcr and R. The effective potential for

this case is shown in Fig. 1. The Bohr quan-
tization rule in a potential with a single
vertical return wall has the form [2] Skdr =
[n + (3/4)]nm. Applying this relation to the
term lsi1/2, we obtain (assuming R << 1,

which is actually always the case)

3
R = 2g¢pag; expl -2 '(T = acr)/gcr]' (2) L
where

Fig. 1. Effective potential

Y By
9er = Vagp = 1. for a = a

er’
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FPig. 2. %, VS the nuclear radius R. Solid line - WKB calculation,

dashed - exact numerical calculation [3]. Vertical line - real criti-
cal radius.

Fig. 3. Coefficient a from the formula W v exp[-va/(a - achJ for
the probability of passing through the barrier at o > Gup VS. Q.
Solid and dashed lines - the same as in Fig. 2. Vertical l;ne -

o .
real value of op

The solid line in Fig. 2 shows the dependence of O,p On R, obtained from for-
mula (2). The dashed cyrve is the result of the exact numerical calculation
[3]. Putting R = 1.1AY%F and A = 2.5 %, this yields Z,n = 170.

We then examine the behavior of the 1lsi/, level in the vieinlty of the

point o = acr’ For o < acr we obtain from the Bohr quantization rule
e=-14+ leacr-a).b
where
%

=f 2 2 =3(— —£r
2Cl (4 M@y = 8on# GopGapnt 9cr)“crgcr(3 + 3 ) * (3)

The same formula holds also for o > %o with the only modification that in

this case the level becomes quasistationary [3]. The probability of passing
through the barrier at a > o calculated in the WKB approximation, is equal

- -
to expl[-va/{u acri], where

cr?

a = 2agrn2/c,. (4)

The solid line of Fig. 3 shows a plot of a against %p in accordance with for-

mulas (3) and (4). The dashed curve is the result of the exact numerical cal~
culation [3].
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We then calculate within the framework of the WKB method the average dis-
tance r between the electron and the center. It turns out that it is impor-
tant to take into account not only the classically accessible region, but also
the inaccessible one. For the case Z = Zcr = 170, the wvalue of r turned out to

be 0.24 (as against 0.29 from theexact calculation [3]), i.e., larger than the
wldth of the classically accessible region r¢ (see Fig. 1), which equals 0.20
at Zcr = 170. This means that in the region Z = Zcr the electron in the 1si /2

state spends the greater part of the time in classically inaccessible region.

The agreement between the WKB approximation and the exact calculations for
terms with large quantum numbers turned out to be, naturally, even better than
for the lsi/2 term.

I am grateful to A.B. Migdal for valuable advice.
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The purpose of the present communication is to call attention to collec-
tive effects that arise as a result of the discrete character of the elementary
charge in beams of electrons (or other charged particles) in a vacuum, and make
it possible to liken such beams, in certain respects, to pseudocrystalline
structures.

Assume that the electrons move in vacuum along linear trajectories in a
strong longitudinal magnetic field. At a given beam current I, the average
longitudinal distance between neighboring beam electrons is a = ev/I, where
e = Iel is the elementary charge and v the velocity of the electrons. If the
magnetic field is sufficiently strong, so that the transverse dimension of
the beam is d << a, then such a thin beam has the form of a linear discretely-
electronic chain recalling certain known models of one-dimensional crystals.

The initial distribution of the longitudinal coordinates of the electrons
in the chain, determined by the shot effect of the cathode, by the thermal
velocities of the electrons, and by the conditions for the formation of the
thin beam, has a random character. Therefore the interval between any two
neighboring electrons is ai(t) # a. With further linear motion, a tendency for

ordering occurs in the chain under the influence of the longitudinal Coulomb-
repulsion forces, i.e., a tendency of the potential energy of the chain to be-
come minimal as ai(t > 1) *+ a, where T is a certain relaxation time. This ten-

dency 1s resisted by the longitudinal thermal motion of the electrons, thus im-
posing on the temperature T of the ordered beam the limitation
kT 1/2
lz/a] ~ [akT/4,8¢%1'/2 = 0.46[_"— —| <L
l’° [+

Here z is the longitudinal coordinate of the electron, z = 0 corresponds to the
equilibrium position of the electron in a perfectly ordered chain at ai = a,
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