We then calculate within the framework of the WKB method the average dis-
tance r between the electron and the center. It turns out that it is impor-
tant to take into account not only the classically accessible region, but also
the inaccessible one. For the case Z = Zcr = 170, the wvalue of r turned out to

be 0.24 (as against 0.29 from theexact calculation [3]), i.e., larger than the
wldth of the classically accessible region r¢ (see Fig. 1), which equals 0.20
at Zcr = 170. This means that in the region Z = Zcr the electron in the 1si /2

state spends the greater part of the time in classically inaccessible region.

The agreement between the WKB approximation and the exact calculations for
terms with large quantum numbers turned out to be, naturally, even better than
for the lsi/2 term.

I am grateful to A.B. Migdal for valuable advice.
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The purpose of the present communication is to call attention to collec-
tive effects that arise as a result of the discrete character of the elementary
charge in beams of electrons (or other charged particles) in a vacuum, and make
it possible to liken such beams, in certain respects, to pseudocrystalline
structures.

Assume that the electrons move in vacuum along linear trajectories in a
strong longitudinal magnetic field. At a given beam current I, the average
longitudinal distance between neighboring beam electrons is a = ev/I, where
e = Iel is the elementary charge and v the velocity of the electrons. If the
magnetic field is sufficiently strong, so that the transverse dimension of
the beam is d << a, then such a thin beam has the form of a linear discretely-
electronic chain recalling certain known models of one-dimensional crystals.

The initial distribution of the longitudinal coordinates of the electrons
in the chain, determined by the shot effect of the cathode, by the thermal
velocities of the electrons, and by the conditions for the formation of the
thin beam, has a random character. Therefore the interval between any two
neighboring electrons is ai(t) # a. With further linear motion, a tendency for

ordering occurs in the chain under the influence of the longitudinal Coulomb-
repulsion forces, i.e., a tendency of the potential energy of the chain to be-
come minimal as ai(t > 1) *+ a, where T is a certain relaxation time. This ten-

dency 1s resisted by the longitudinal thermal motion of the electrons, thus im-
posing on the temperature T of the ordered beam the limitation
kT 1/2
lz/a] ~ [akT/4,8¢%1'/2 = 0.46[_"— —| <L
l’° [+

Here z is the longitudinal coordinate of the electron, z = 0 corresponds to the
equilibrium position of the electron in a perfectly ordered chain at ai = a,
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k is Boltzmann's constant, m and ry, are the mass and classical radius of the
electron, ¢ is the speed of light, and the electric field of the linear per-
fectly ordered chain, acting on one of the electrons which is displaced from
the equllibrium position (z = 0, P = 0) to a point with cylindrical coordinates
z and P, is characterized by the two components

O S RO

e =
E, = - 2

v=l

| e e o i e +1.7[(_)-__(_J

and

oo 2—3/2
e p
Ep--_;_): K-—- ) ] +

+ [(l + —i— 22—)24- v"(—g-)z]-snl -2 4—: {1 +1 3["("‘) (—)”
and by the potential
Ulz, p) = 1,2% (_”;)ZP _-o.ss(la)z+ 5,2(-2-)2} 2(%)z 1.4 o,as(-:-)zn .

which has a saddle-like distribution (the approximate equations are valid in
the case of small displacements from equilibrium |z/a] << 1 and p/a << 1).

The longitudinal magnetic field intensity necessary to produce a thin
(d << a) pseudocrystalline beam can be approximately estimated from the balance
of the radial forces (centrifugal, Lorentz, and Coulomb) acting on the electron

a, 3/2
H =3, l[mcza'sll/2 1,7 10“’( )

The transverse component of the electron velocity is set in this case by its
potential U(z, p), and the formula for the constant ag 1s given below.

So long as the characteristic linear dimension Az = 2|z| (the longitudinal
electron localization interval) greatly exceeds the de Broglle wavelength, i.e.,
so long as lzl >> mn/mv (h is Planck's constant), it is possible to dispense
with a consistent quantum mechanical approach to the problem and to use only
the uncertainty relation for the lower estimate of the minimum spatial period
a of a pseudocrystal, a >> ap = A%/2me? = 0.3 A, characteristic of atomic dimen-

sions and of the constants of ordinary crystals. We have used here the obvious
relation

-
AzAp, = 2Az [— 2eml.(—'2-i)]

between the interval Az and the momentum scatter Ap_ = mAv, which holds for an
electron oscillating in the potential field U(z,p).
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Pseudocrystalline electron beams, unlike true crystalline structures, re-
tain thelr stability only in motion (Tvl > 0), and have no electric neutrality.
Therefore, besides the collective effects that have a greater or lesser simi-
larity to phenomena in true crystals, particular interest attaches to collec-
tive resonant radiative processes occurring when the electronic pseudocrystal
interacts as a unit with external fields and with matter.

The resonant properties of the pseudocrystal can be observed, for example,
when it interacts with an electromagnetic wave of frequency w, = 2mI/e (n =

1, 2, ...). In particular, in full accord with the laws of stimulated emission,
such a beam is capable of stimulated emission or resonant absorption of photons
with energy En =—hwn. The highest attainable order of the overtone n = np de-

pends on the degree of ordering of the pseudocrystal and consequently on its
temperature T

r, mc"’]”z 1300 a 172

"y = <°’55[a i >=<F(;) >

The collective radiative processes in electronic pseudocrystals can be
observed in different experlmental situations: under conditions of the Ceren-
kov effect, in transition radiation and bremsstrahlung, in the excitation of a
thin-layer dielectric resonator (a phenomenon inverse to optical modulation of
an electron beam [1]), in synchronous interaction of a diffraction grating with
a surface wave or (in the case of hard photons) with spatial harmonics of the
field in a single crystal [2], ete. In all these phenomena, as well as in all
other radiation processes produced by free electrons, one should expect the
appearance of characteristic lines at the resonant frequencies of the pseudo-
crystal w5 with an intensity proportional to the square of the beam current I.

There 1s undisputed interest also in investigations of the resonant inter-
action of pseudocrystalline beams with matter possessing quantum transitions
with energies E = ﬁwn.

It must be emphasized that in direct contrast to the case of modulation of
electron beams by extraneous electric fields, say microwave fields, in elec-

tronic pseudocrystals the Coulomb forces cause and maintain the ac domponent of
the beam current.

The kinetics of the process of ordering of the pséudoerystal, as manifest
both in the cooling of the beam and its thermalization, and an estimate of the
relaxation time 7, will be the subJect of a separate study.

In conclusion, the table serves as a useful numerical illustration.

PR v/ ¢ a,u |H, kOe T, °K | 2nc/w,n n,
50 0.2 0.192 33 25 0,96 3
200 0,2 0,048 260 100 0.24 3
200 0,2 6,048 260 25 0,24 6
800 0.2 0,012 2100 100 0.06 6
800 0,2 0.012 2100 25 0,06 12

1)Conc:erning magnetic fields on the order of a mega- -
oersted see, for example, [3].
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The author is grateful to R.V. Khokhlov for a valuable discussion.
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In the case when electrons localized on impurities interact strongly with
lattice vibrations, multiphonon processes leading to broad electron-vibrational
light-absorption and luminescence bands become probable [1]. If the constant
of the coupling with the oscillations is small, then at low temperatures the
spectrum constitutes a phononless line with a weakly pronounced vibrational
structure. A rise in temperature can lead to a strong release of heat even in
the case of weak coupling, owing to stimulated processes in the phonon sub-
system.

In the present paper we propose a method for directed variation of the
shape of the optical curves by heating the phonon subsystem of the crystal in
a narrow spectral reglon; this heating is produced, for example, by a powerful
ultrasonic wave or by stimulated Mandel'shtam-Brillouin scattering of laser
radiation. It turns out that this superheating can become strong enough to make
it possible to observe ultrasound-stimulated multiphonon absorption of light.

We write the light-absorption coefficient in the form [2]:

K@) = __l_ }" e-iﬂf—f‘]ol

2m -0

<< dt (@) dit) >> dt,

where d(t) is the operator of the dipole moment in the Helsenberg representa-
tion, and the operator of the interaction with the ultrasound is chosen in an

approximation that is linear in the phonQn operators ch and ch,
2 1 +
H’ = — 2v”£a (b§o+b§g)
V2 i

with accomnt taken of only the polaron gffect; i numbers of electronic states,
which are assumed to be nondegenerate; K and ¢ are the wave vector and the
polarization index of the ultrasonic wave of frequency w; I is the damping con-
stant of the discrete lines of the optical spectrum. The results of the aver-
aging in (1) depends on the statistical properties of the vibrations introduced
in the ecrystals, and we consider here two limiting cases: 1) an absolutely co-
herent source and 2) a thermal (Gaussian) source [3]. The calculation procedure
is the same as in the problem of calculating K(Q) in the presence of electro-
magnetic radiation of high intensity [3].

For an absolutely coherent ultrasound source we obtain:
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