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In the case when electrons localized on impurities interact strongly with
lattice vibrations, multiphonon processes leading to broad electron-vibrational
light-absorption and luminescence bands become probable [1]. If the constant
of the coupling with the oscillations is small, then at low temperatures the
spectrum constitutes a phononless line with a weakly pronounced vibrational
structure. A rise in temperature can lead to a strong release of heat even in
the case of weak coupling, owing to stimulated processes in the phonon sub-
system.

In the present paper we propose a method for directed variation of the
shape of the optical curves by heating the phonon subsystem of the crystal in
a narrow spectral reglon; this heating is produced, for example, by a powerful
ultrasonic wave or by stimulated Mandel'shtam-Brillouin scattering of laser
radiation. It turns out that this superheating can become strong enough to make
it possible to observe ultrasound-stimulated multiphonon absorption of light.

We write the light-absorption coefficient in the form [2]:

K@) = __l_ }" e-iﬂf—f‘]ol

2m -0

<< dt (@) dit) >> dt,

where d(t) is the operator of the dipole moment in the Helsenberg representa-
tion, and the operator of the interaction with the ultrasound is chosen in an

approximation that is linear in the phonQn operators ch and ch,
2 1 +
H’ = — 2v”£a (b§o+b§g)
V2 i

with accomnt taken of only the polaron gffect; i numbers of electronic states,
which are assumed to be nondegenerate; K and ¢ are the wave vector and the
polarization index of the ultrasonic wave of frequency w; I is the damping con-
stant of the discrete lines of the optical spectrum. The results of the aver-
aging in (1) depends on the statistical properties of the vibrations introduced
in the ecrystals, and we consider here two limiting cases: 1) an absolutely co-
herent source and 2) a thermal (Gaussian) source [3]. The calculation procedure
is the same as in the problem of calculating K(Q) in the presence of electro-
magnetic radiation of high intensity [3].

For an absolutely coherent ultrasound source we obtain:
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where nhw 1s the volume energy of the ultrasound and Iy is the Bessel function:
Boo = YiiRo = VkkRos Px=H0-¢ +¢, |d,|? . B
ei(k) 1s the energy of the electronic terms. Using the well-known expansion

ipwt
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we can represent (2) in the form

Kix}) = —
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which shows clearly the multiquantum nature of the band, in which the fine
structure can be resolved at sufficlently small natural widths T, and the

"effect of suppression" of the optical absorgtlon [3] can be observed. For
sufficiently powerful ultrasound sources (BA 2/’ﬁw) >> 1 (estimates are given
below) we can use the quasiclassical approximation, replacing sin(wt/2) by
wt/2, and obtain
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Expre531on (4) describes a symmetrical spectral curve, which is bell-shaped if
T2 > B*n/A% (but not Gaussian), and is double-humped in the opposite case.

Curve (4) represents a multlphonon band stimulated by ultrasonic phonons whose
frequencies are w << T, Wy In this case the structure of the band cannot be

resolved in practice, and the effect can become manifest experimentally in the
form of stimulated ultrasonic broadening and a change in the contour of the
phononless line; formula (1) therefore takes into account the effect of the
natural width T of the phononless line. It should be borne in mind that T,
generally speaking, depends also on the ultrasound power.

K(x) =

In the case of a Gaussian (thermal) source [3] we obtain

1 H#2(C + ix)? 5@+ ix)
] )
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K(x} =

where ® is the error function. The curve (5) always has a bell-shaped form,
with a maximum at @ = Q¢ (the absence of a Stokes shift in the case of strong
heat release should not be surprising, since the constant of coupling with 1ong—
wave ultrasonic oscillations is very small, and ferms of the type B << Bn

have been discarded). Comparison of curves (3) and (5) can serve as the basis
for an experimental establishment of the statistical properties of ultrasonic
phonons in crystals.
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A favorable situation for the observation of the indicated effects is one
in which the electron-phonon interaction in the impurity center is not too
small, but at the same time 1t is not large enough to hide the phononless line
by the vibrational structure. Such ‘objects, for example, are the phononless
line of the U-band of ruby (Cr®t:A1:03) and also the ghononless line and its
vibrational replicas of the 4f + 5d transitions in Ce’t:CaF, [4]. For numeri-
cal estimates we shall use the procedure for calculating the parameters of the
electron-phonon interaction [5, 6]; this procedure results in good quantitative
agreement with experiment. For the phononless line of the U band (the transi-
tion “A2g(tg) - MTQg(tg)), we obtain the broadening §:

- (100\/'21n2./3)DqJ‘P/pv3. (6)

where Dq is the parameter of the theory of the crystalline field, p is the den-

sity of the crystal, D is the density of the ultrasonic energy flux Using for
ruby Dq = 1800 em™ 1, o = Ug/em®, v = 10° em/sec, and P = 100 W/cm? (this power

corresponds to a frequency v v 10° sec "), we get § v 1 em”!. For the highest
attainable ultrasonic powers (P = 10° W/em?, v = 2 x 10" sec~! [7]) we obtain
§ = 30 cm

The proposed effect can be important for applications, since the width of
the phononless line is one of the main parameters determining the operating
conditions of a laser.

The authors thank Yu.E. Perlin for a useful discussion.
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Relaxation oscillations in a beam-plasma system placed in a magnetic field
(these were observed by many investigators and described in detail in [1]) are
customarily called low-frequency (LF) oscillations, resulting from the rapid
diffusion of the plasma from the region where the beam is located. The diffu-
sion of the plasma is due to ionic oscillations. When the diffusion causes the
plasma density in the region of the beam to become lower than a critical value,
the interaction between the beam and the plasma stops, and the power of the
hlgh frequency (HF) electronic oscillations excited by the beam decreases, and
with them alsoc the power of the ionic oscillations; the diffusion stops, the
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