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The resistive state of a quasi-one-dimensional superconductor is treated as
the result of the onset of topological singularities. The current—voltage
characteristic is calculated on this basis.

PACS numbers: 74.30. — e

It is well known that in an infinite superconductor with a homogeneous and
stationary order parameter there can exist no constant and homogeneous electric field,
for otherwise the potentials that increase linearly with time or with the coordinate
would destroy the superconductivity. In a real situation, a state, customarily called
resistive, is established in a superconducting sample to whose ends a potential differ-
ence is applied. This state is characterized by destruction of the macroscopically co-
herent state in certain points of the sample, where jumps of the order parameter take
place. The concept of phase-slippage centers in a superconductor was introduced by
Langer and Ambegaokar.'

A resistive state can be realized in a superconductor by several methods. One of
them is the case of static slippage centers, where the chemical potential of the pairs
becomes discontinuous at each of the centers, so that the condensate adjusts itself to
the increasing chemical potential of the quasiparticles. This picture is quasistationary
if the Josephson current through each center is disregarded. It was investigated in a
number of papers.”™® It was treated most consistently by Galaiko.’

The other method is connected with the case of dynamic phase-slippage centers.
The order parameter vanishes in this case at certain instants of time and at certain
points of the superconductor. This is precisely the situation indicated in Ref. 1 and
investigated also by Rieger, Scalapino, and Mercereau.®

Let us dwell in greater detail on this case. Assume we have an infinite narrow
superconducting sample. The complex order parameter is 4 = |4 | exp( — 2iey/ch),
where — 2ey/c#i is the phase. In addition to the electromagnetic potentials 4 = 4,
and ¢, we can introduce the gauge-invariant combinations @ = A4 + dy/dx and
® = ¢ — dy/d(ct). We introduce in the two-dimensional space p = {x; ct} the two-
dimensional vectors

q=1{Q; - o} a =1i4;- ¢}, ¢))
which are related by

q=a +dX/dp . @
Then, if the circulation of the vector q vanishes along a certain closed contour L
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enclosing the area S (see Fig. 1) then
L IX )
$qdp = [rotadS +$—-——9p"=0; |dS|=d°p. A3)
S L 9p

Since the change of the phase on going around the closed contour should be a multiple
of 27, and the electric field is formally equal to the vector

1 a4 EPS

E=e— ——- = (rota 4
c dt dx rot a)g ; )
which is directed along 4 S, it follows that
JEd?p =n? ©)
S

where @, = wcfi/e is the “flux quantum” (in analogy with vortices in type-II
superconductors’).

Thus, the phase slippage centers can be visualized as topological singularities
similar to vortices in two-dimensional space-time. If they form a regular lattice, then
the contour L can be taken to be the boundary of the cell, and by virtue of the
periodicity the circulation of the vector q is equal to zero. For the case of a rectangular
lattice of solitons, the electric field averaged over the coordinate and over the time,
which is in fact the quantity measured in the experiment, takes the form

nd
[Ed?p - ——

xotoc S cacotbo

E =

(6

This relation, together with the boundary condition for an infinitesimally small con-
tour / (see Fig. 1),

>
f qdp’=°n(p0) (7)
l

is useful for the determination of the current-voltage characteristic of the supercon-

ductor, if the periods of the oscillations are determined from the given current.
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We consider a superconductor with large concentration of paramagnetic impuri-
ties.* In terms of the units A2 =27%T2—~T?; £*=6D/r, A% { ~'=2r,8%
2e@ =1t ~ !, (2e/c)Q = £ ~ (#i=1), the equations for the modulus of the order pa-
rameter and for the gauge-invariant potentials take the form

Al YA \ , R N
122 - S5 (8- DIAL Q 1Aj= 0, -(A1%0+ o+ =)= j;
120A1% = - 2= (jA]20). ®

dx

Kramer and Baratoff * found by numerical methods that at j>j .. ~0.74j,., where j,
= 2/3(3)""? is the Ginzburg-Landau critical current, there exists a time-periodic solu-
tion of the type considered above. Furthermore, if j — j,..— + 0, then the temporal
period tends to infinity, and the solution for the order parameter as t— + c« goes over
into the unstable static solution of Langer and Ambegaokar.!

2 o (72
342 -2 } ©

Anlx) <A, -(3A% - 2)ch™? [x(

The symbol “ o labels the coordinate period of the structure. In the numerical calcu-
lation of Ref. 9, boundary conditions could occur periodically in time for only one
phase-slippage center over the length of the sample. For an infinite sample, however,
or under boundary conditions that admit of the onset of new solitons in the sample,
their number can vary in space. For this reason, the structure of the period, both with
respect to coordinate and with respect to time, is determined by the supercriticality
j —jmin'

At j=j .., the solution obtained in Ref. 9 for (8) is A (x,t) =4 _ (x) + ¥(x,t),
where —0 as x— + « and t— + . It can be verified by analyzing the curve of Ref.
9 for the chemical potential that the quantization rule (5) with n = 1 is satisfied in this
case. At (j — jin)€Jmin We can write the solution in the form

Axyt) =B, (x) + 3 V(x~nx, t —m,)+A (% 1), (10)

where 4x, (x) is the static solution of Eqs. (8) with period x, at the currentj =j _,; at
x<x, this solution differs little from (9). Then, at sufficiently large periods, the func-
tion A, is small. The right-hand side of the equation for 4, contains, besides
(J — Jmin)» small overlap terms of the type ¥(x,t JW(x,t + t,) ~exp( — bt;) and in addi-
tion [4, (x) — 4 _(x)] ~exp( — ax,). It can be assumed that the exact solution of Egs.
(8) should be arranged in such a way that all these quantities are of the same order.
From this we get for the periods of the soliton lattice

x ~ & In Imin ¢~ 7 lnlmin . 1)
I =Imin ] = Imin

Using now relation (6) for the average electric field, we obtain the current-voltage
characteristic at (j — j,in) € Jimin

j=17_: I 1/2 C~ 1
A, exp { - C<_..£"_L’L> } . 12
Tmin ok ’ )
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We note in conclusion that the considered periodic structure can in principle be
reasonsible for the experimentally observed electromagnetic radiation from a super-
conducting sample in the resistive state.!* In addition, the entrance of new solitons into
the sample through its boundary should lead to voltage jumps, which were observed
experimentally in Ref. 11.

We are grateful to A.I. Larkin and Yu. N. Ovchinnikov, as well as to E.B. Bogo-
mol'nyi and S.V. Manakov, for valuable discussions.
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