It follows from (2) that when v > s, amplification of the phonons inside
the Cerenkov cone q°*v = gs takes place in the wave-number region v2mQ < g <
Y2mfd + ZpF. The maximum gain in this region is smaller by an approximate fac-

tor 8~! than the maximum of the function a(a) at the point q = 2pF in the ab-

sence of the electromagnetic wave [1]. At @ ~ 10'* sec~! and m ~ m,, the posi-

tion of the gain maximum corresponds to the wave number g ~ 107 em™ !, and its

height at A ~ 10 eV, B ~ 10-2%, and e v 102 eV is Ja| ~ 10 em~!, so that at

the temperatures needed for degeneracy the electron amplification can pre-
dominate over lattice absorption of sound.

Tt follows also from (2) that in the wave-number region v2mQl - 2pF < q <

/2mil there will be amplified phonons outside the %erenkov cone (with the ex-
ception of the plane perpendicular to the vector Eg). Phonon instability is
possible in this region of wave numbers also in the absence of a constant field.
In fthis case the phonon distribution is symmetrical about a plane+perpendicular
to E¢, but anisotropic because of the presence of the factor (Eo+q)2% in (2).

The latter circumstance must result in anisotropy of the kinetic coefficients.

The occurrence of electron-phonon interaction at q >> p in the field of
an electromagnetic wave is, as can be readily verified, the consequence of
the conservation law €p+q - Sp * wq - = 0 for processes of interband absorp-
tion of a photon, accompanied by absorption or emission of a phonon. From the
conservation laws we can also obtain the already-indicated frequency region in
which the phonon instability develops. To this end it suffices, for example,
to generalize the method of graphic kinematic analysis proposed in [7] to in-
clude the case when an electromagnetic field is present.

The author is grateful to V.L. Bonch-Bruevich and the participants of his
seminar for a discussion of the work.
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We wish to call attention in this paper to one of the mechanisms whereby
the coefficilents of diffusion and thermal conductivity across a strong magnetic
field can be increased; this mechanism appears in the presence of intense low-
frequency potential oscillations in the plasma.
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It is well known [1, 2] that allowance for the toroidalilty leads to a
modification of the old classical transport coefficients. Physically this is
connected with the so-called "mixing" phenomenon [4], in other words, with the
fact that the surfaces on which the drift trajectories of the particles lie
differ fromthe magnetic surfaces resulting from the presence of the toroidal
drift. If we denote by A, the deviation of the drift trajectory of the elec-

trons (j = e) and of the ions (j = i) from the magnetic surface, which we shall
assume for simplicity to be in the form of a cylinder with r = const, then the
coefficients of radial diffusion D and of the thermal conductivity «., will be

of the following orders of magnitudel’ [4, 5] J
2" ' 2
D=y, A; ﬁ=mN%. (1)

where\ve, Vee? and Viy are the effective frequencies of the electron-ion,
electron-electron, and ion-ion collisions, and N is the plasma densityz).

Formulas (1) are qulte obvious, and since a detailed quantitative analysis
of the transport processes, based on diffusion regarded as Brownian motion and
on an analysis of the drift trajectorlies is presented in [5], we shall not
discuss them here in detail.

The displacement Aj in formula (1) can be estimated with the aid of the
drift equations of motion. It is easily seen, however, that in the case of
sufficiently small displacement Aj << r, their order of magnitude is

Ai=vr',/ﬂi. (2)
where v% is the drift-velocity component normal to the magnetic surface, and
Qj 1s the characteristic frequency of motion of the particle along the small
azimuth ¢. In the case of toroidal systems in which there are not azimuthal
electric filelds, v% i1s obviously equal to the toroidal-drift velocity

v

1y, (3)
R o

vii=
n

where vj = VTj7mj 1s the average thermal velocity and wj = ejB/mjc is the Lar-
mor frequency. '

However, the presence of an azimuthal field also causes drift motlon of
the particles across the magnetic surfaces, and consequently can also lead to
an increase of the transport coefficient, which is not associated directly

1)'I'o be sure, it is necessary to indicate that in the case of a fully
ionized plasma and at very low collision frequencies, when the free-path time
becomes larger than +the characteristic period of motion of the trapped par-
ticles, Ve and Vig increase by a factor R/r compared with the ordinary effec-

tive collision frequencies (r and R are the minor and major radii of the torus),
owing to the differentlal character of the integral of the Coulomb collisions.

2)We note that the presence of plasma noise of sufficiently high frequency

can cause the effective frequency of the electron-electron collisions Vee to

be much larger than the effective frequency of the electron-ion collisions

Vo and consequently the coefficient of electronic thermal conductivity Ke will

exceed the diffusion coefficient DN.
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with the presence of toroidality [5].

Thus, let us assume that sufficiently intense low-frequency oscillations
(the nature of which will not be discussed here) are excited in the plasma and
are described by a potential

img + o t

® - 30 (r)e ;o om=1,2,3, .. (4

and let us estimate with the aid of formulas (1) and (2) the influence of such
oscillations on the diffusion and thermal conductivity of the plasma along the
minor radius in magnetic traps of the "Tokamak" type, characterized by longi-
tudinal and azimuthal magnetic-field components B_ and B, = 6B << B_, re-
spectively. & ¢ ¢ ¢

If the oscillations (4) do not have the character of noise, then in the
absence of collisions they can obviously not lead to transport of particles or
energy across the magnetic field, since the time averaged radial displace-
ment Aj vanishes in this case. But in the presence of collisions, the situa-

tion changes, since each collision causes the particle to "forget," as it were,
1ts prior velocity and coordinates. Naturally, this becomes most strongly
manifest iIn the case of sufficiently low oscillation frequencies, when wm<< V..

J
If in addition the characteristic frequency of the azimuthal motion Qj ex—
ceeds the field oscillation frequency Wy s then the time dependence of the po-
tential is in general immaterial.
Thus, under the condition
- p2 2
r‘n0v‘. mé \ (5)

we can assume in first approximation that the particle moves in a static poten-
tial field with a potential

ocff - £ 0 (1o, (6)

where the sum extends over all the harmonics m for which the condition (5) is
satisfied.

The drift-velocity component normal to the magnetic surface, which is
connected with the potential (6), 1s obviously equal to

c
B r 9¢

eff
.S 100 (7)

and greatly exceeds the toroidal-drift velocity (3) at sufficiently large os-

+~
scillation amplitudess), when e@ef‘/Tj >> r/R. If we assume, finally, that the

$)Mhe case when the electric field does not depend on the time and ampli-
tude of the azimuthal harmonic is sufficiently small, so that ej¢ 4y (r/R)Tj,
was considered quantitatively in [5].
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intensity of the oscillations is sufficiently high, so that the ratio
eff./TJ becomes of the order of unity and consequently the number of "trapped"

particles (or "captured" by the wave) becomes of the order of the number of
"transiting" particles, while the longitudinal velocity of either type of par-
ticle is of the order of thermal, then the displacement Aj will be of the same

order in the entire region of collision frequencies vj >> wm. Recognizing that

the characteristic frequency of the azimuthal motion in this case is obviously
equal to QJ ~ mov, /r, substituting formulas (7), (6), and (2) in (1), and

averaging over the azimuth ¢, we ultimately obtain

2 '2 2
., 1 g el
m: 02 m 2-,-.2 (8)
) mlv, mﬂzvi
. << min Vg? » ; ’
r ry,
K v .‘-’j N 07"»".‘2‘ PR :
L e~
mavl mﬂzvl? . (9)

w << min {v.. ,

2

r r II”

From this it follows that for sufficiently intense oscillations, when
-Z (e2|¢ |2/2T2) v~ 1, the toroidality plays no role, and the coefficients of

dlffu31on and thermal conductivity increase apprec1ab1y (by a factor 8-2) and
are determined by the o0ld classical formulas, in which the total field B should
be replaced by the toroidal magnetic field B¢.

On the other hand, if for any specles of particles J one of the condi-
tions (8) or (9) is violated, then the corresponding expression must obviously
be replaced by the one previously obtained (see, e.g., [5]).

In conclusion, we note that the presence of harmonics of the potential of
the longitudinal coordinate ¢ violates the axial symmetry and can therefore
lead under certain conditions to an even greater increase of the transggrt
coefficient (as 1s the case in systems of "stellarator" type [3, 5, 6]
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The problem of obtaining new materials in phase transitions frequently
encounters the need for producing a static or dynamic pressure of the order of
10° - 10% bar. To produce such high dynamic pressures in a solid one can use
a strong-current relativistic electron beam. By focusing such a beam in a
small volume at a certain depth from the surface of the solid, and by choosing
the beam parameters and the target material in such a way that multiple ioniza-
tion gives rise to a large number of free electrons, it is possible to obtaln
a state wherein the electron density is lower by one order of magnitude than
in metals, i.e., Ne v (1 - 3) x 1023 em~®. In this case the Fermi energy will
be on the order of eF « 0.5 x 10~2% and Né/s = 10 - 30 eV. If we choose as the
target a substance with readily-ionized atoms and closely-lying ionization
levels (e.g., rare-earth elements or actinides, in which the first ionization
potential is ~5 eV and the next five - six levels are spaced 5 - 10 eV apart),
then the temperature of the electron gas may turn out to be lower than the
Ferml energy, and the gas is degenerate. To this end, obviously, it is neces-
sary to satisfy the condition ’I‘e 2 (I - EF) < €p> where I is the average

ionization potential of the substance per electron. The %ressure in such a

degenerate electron gas is of the order of p = 2 X 10"27Ne/3 = (0.5 - 3) Mbar.
Let us estimate the beam parameters necessary to attain a pressure of 1 -

Mbar. Such a pressure is ensured by an electron concentration Ne ~ 1.5 x 1023

cm‘s, corresponding approximately to fivefold ionization of the target atoms.

The average lonlzation potential per electron in easily-ionized substances is
in this case of the order of 25 - 30 eV, and the Fermi energy is €p 15 eV,

i.e., Te < 10 - 15 eV, and consequently the electron gas will be degenerate.

For complete fivefold ionization of a volume with linear dimension a the
required energy is "I X 10%a% J. Obviously, the dimension a should be, on the
one hand, of the order of the beam electron mean free path, which amounts to
several millimeters at an electron energy ~3 - 5 MeV, and on the other hand,

a << VFTO, where T¢ is the duration of the beam pulse. The latter inequality

ensures the absence of accumulation of space-charge-producing excess electrons
in the volume. We shall use in the estimates € ~ 5 MeV and a linear dimension
a = 0.5 em. The necessary total beam energy is then 50 kJ. Each beam elec~
tron produces in this case 1.5 X 10% ionization electrons and, if it is recog-
nized that the total number of beam electrons per pulse is n v 10'7, then the
ionization results in 1.5 X 1022 electrons in a volume a®, corresponding to the
concentration N, = 1.5 x 1023 cm~?® needed to produce a pressure p = 1 Mbar.

The pulse time Tp is, in turn, bounded from above. It can be easily
understood that T, must satisfy the condition Ty < a/vy, where vy 1s the veloc-
ity of the ions dragged by the electron-gas pressure, vo = 3 X 10° cm/sec. For_
the target and beam parameters assumed above, we have 3 X 10-% sec << Ty <
< 2 x 107% sec, then we obtain for the beam power W = 5 x 10'° W, and for the
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