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The phenomenon of channeling of charged particles was discussed theoreti-
cally in a number of papers [1], but nonetheless the distribution function of
the ionization losses of the energy under conditions of channeling has not yet
been calculated. The purpose of the present article is to call attention to
the fact that in the case of channeling of heavy particles there exists an
approximation in which the inelastic processes can be described in an exceed-
ingly simple manner.

Indeed, taking into account the smallness of the characteristic angles of
the scattering of the heavy particle by an electron compared with the char-
acteristic angles of elastic scattering of a heavy particle by a nucleus, 1t
can be assumed that the scattering by an electron does not change the direction
of motion of the heavy particle, and changes only its energy.

In this approximation, inelastic scattering does not change the distribu-
tion of the heavy particles over the cross section of the beam. Therefore, in
the kinetic equation for the distribution function of the particles with re-
spect Lo the energy loss A and the coordinates x and r, , the transverse coordi-
nates T play the role of parameters:

aflx,n ., A) T
(xa e f de wgle,n) [F(x, 1, A=) = Flx,1), A)], (1)
X

In the case of small losses (A << E ) the probablllty of loss of energy € by a
particle per unit path w (e, rL) = Wp (e, r ), and the solutlon of (1) takes
the form

+ j oot

f(x,r‘., A) = 2mi)~t f dpexpl ~pA - c}dcwE (e, rL)[l—e"‘]L (2)

- jootg

The final particle-energy distribution function is obtained by averaging
(2) over the spatial distribution of the transverse coordinates of the parti-
cles W(r ) due to the elastic scattering

Flx,A) =f o2 Wi ) fx, 5, A) (3)

where the integration over the transverse coordinates has been reduced to inte-
gration over the transverse cross section of one unit cell.

2. In an amorphous medium w(rL) does not depend on r and (3) coincides
w1th the particle-energy distribution function in an amorphous medium [2],
m(x, A). TIn a single crystal, the flux of positively charged particles

moves in such a way that the number of units between the crystallographic
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planes is larger than near the planes (;; = 0), i.e., W(EL) > W(0). Represent-
ing the spatial distribution of the particles in the single crystal in the form

V() = Win)+W(0)

we can transform (3) into
f(x, A) = fk(x, A) + afam(x, A),

where
FulnB) = (&1 Wln ) lx gy A), "
the quantity a is the fraction of the particles whose spatial distribution is

homogeneous. For heavy particles, the characteristic values are A >> e in (2),
and we can obtain

(1-exp(= pe)) = - pe +(1/p2e?. (5)

It is important here that in 1ntegrat1ng over the transverse coordinates in (1)
we can neglect terms of order p? and higher, if the thickness L of the con-
sidered single crystal is bounded from above by the condition

nBLIi’i[e“(Zf/3 + Z;'/s)/vzl2 << 1, (6)

where Ry is the distance from the crystallographic plane, on which W(EL) dif-
fers noticeably from W(0). Substituting (5) in (4) and using the Lindhard
distribution for W (r ) [11, we obtain after integration

A-7x)?
fix,A) = ("xfz)"uzexp - -—(——-- M 3l R (7)
cix
where EE and EE are defined by the relations
il (8)
ci = 4nn°ZlZ§e4(ZIZ/3 + 222/3)/‘,2'
Y ZRCSYE) (9)
2”42 et Zm ve2\/22/3+22/3
% - n (= )1,.

k1n z

where Zi is the atomic number of the crystal, IZ is the ionization potential,
and Z,e and Ekin are the charge and kinetic energy of the incoming particle.
The total distribution function consists therefore of two terms, one of which
duplicates the distribution function in the amorphous body, multiplied by the
factor a < 1, and the second gives a Gaussian energy distribution with an aver-
age energy and width different from those of the amorphous body. Thus, from a
comparison of fam(x, A) and (7) it follows that the channeled particles lose

on the average an energy smaller by a factor

: v 2me v?
(l - In e [l ) (10)
ety 22/3+.72/3 Iy

than the non-channeled ones. In addition, for the channeled particles there
decreases the dispersion of the energy losses by a factor
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et {ZZ;/3 +. Z%”) /v2_ (11)

These results are connected with the absence of collisions with small impact
parameters for the channeled particles.

It should be emphasized that expressions (7) - (9) were obtained under the
assumption that the velocity of the incoming particles should be much larger
than the velocity of the atomic electrons.

3. The obtained distribution function of the energy loss (4) and (7) is in
satisfactory agreement with experiment [3]. In [3] there is given an experi-
mental plot of the energy losses for incident protons with energy Bysg = 4,84

MeV, passing through a single crystal of Si with L = 2 mm, parallel to the [111]
direction. This curve is characterized by two maxima, one of which coincides
with the position of the maximum in complete absence of symmetry. This maxi-
mum is well described by the second term in (4).

The height of the second maximum in [3] exceeds by 9.1 times the height of
the first maximum. The increase of the height of the second maximum is con-
nected also with the decrease of the dispersion of the second maximum (11) and
with the fact that the number of channeled particles is larger than that of
the unchanneled ones. Therefore, using for o the experimental value 1.9, the
distributicon function of the energy losses (4) and (7) leads to an intensity
ratio of the second maximum to the first equal to 10 (the experimental value
is 9.1).

It was observed in experiment that the loss of the channeled particles is
0.45 of the loss of the unchanneled ones. In the considered approximation it
follows from (10) that the decrease of the energy loss is 0.5. This is con-
nected with the suppression of the "close" collisions, in which, according to
Lindhard [1], there is lost approximately half of the total energy losses.
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There have been lively discussions lately on the gquestion of obtalning a
metallic modification of hydrogen at high pressure. This modification, it is
assumed, can have a high temperature TC of transition to the superconducting

state. For the practical utilization of the high Tc of the metallic hydrogen

it is important to be able to maintain it at normal pressure at sufficiently
high temperatures (on the order of or higher than Tc). In this connection,

interest attaches to an estimate of the interval of stability of the meta-
stable metallic hydrogen at normal pressure.

510





