Temperature dependence of the ther-
modynamic potential (G) of solid
(s) and liquid (1) phases of the
same substance: a - case of two
solid phases (stable I and meta-
stable II); b - case of two liquid
ph?ses (stable T and metastable
I1).
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According to thermodynamics, the melting temperature of the metastable
modification of any substance is always lower than the melting temperature of
its stable modification (Fig. a). In the presence of two liquid phases (stable
and metastable), the temperature of melting of the solid phase into a stable
liquid phase is always lower than the temperature of melting into a metastable
liquid (Fig. b). In the general case of two solid (stable and metastable) and
two liquid (stable and metastable) phases, the lowest melting temperature is
the temperature of melting of the metastable solid phase into a stable liquid
phase.

In fransformations in the solid state, one frequently observes during
crystallization, by virtue of the kinetic factors, the metastable existence
of one of the phases in the region of stabllity of the other phase. To the
contrary, the experience accumulated to date shows that it is impossible to
superheat a solid (at any rate by heating from the surface) above its melting
temperature (possibly because the formation of the liquid layer on the surface
of a melting body does not involve the loss of energy to the formation of the
new surface).

As applied to hydrogen, the foregoling means, first, that the lowest melt-
ing temperature at normal pressure is the melting temperature of the metastable
(metallic) modification into a stable (molecular) liquid (and this temperature
consequently lies below the melting temperature of the stable (molecular) modi-
fication into a stable liguid) and second, that superheat of the metallic modi-
fication above the melting temperature is hardly possible.

Thus, the upper limiting temperature for the existence of the metallic
modification of hydrogen at normal pressure obviously does not exceed the melt-
ing temperature of its usual modification (14°K). In fact, wlth decreasing
pressure the phase transition from the metallic into the ordinary modification
will apparently occur at a still lower temperature.
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Capillary waves can propagate over the surface of liquid helium, and in
the superfluid solution He® in He" there exists also surface impurity levels
[1, 2]. Both can be regarded as surface elementary excitations. Thelr motion
is accompanied by transport of mass, energy, entropy, etc., and it can be re-
garded as a motion of a surface normal component.
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The surface normal density is calculated in analogy with the volume case,
and is equal to
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where 6(5) is the energy of the surface excltations as a function of the two-
dimensional momentum P, and ne(e) is the equilibrium distribution function.

Substituting in (1) the spectrum of capillary waves e = (ocpa/p‘li)l/2 (o,
p - surface tension and density of the 11qu1d) and the Planck function n,, we
obtain the surface normal density of pure He"
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where T'(x) and z(x) are respectively the Gamma and the Riemann Zeta functions.

We note that the spectrum of the capillary waves does not satisfy the
Landau superfluidity criterion. If, however, we take into consideration the
finite nature of the force of gravity, then the critical velocity turns out
to be finite.

In the case of a solution, the impurities 51tuated on the surface levels
are described by the dispersion law € = -g, + p /2m ,» Wwhere g, = 2°K, mg = 2m,

(m; is the mass of the He® atom), and the energy is reckoned from the minimum
value of the impurity energy in the volume. The impurity part of the surface
normal density is vn = mst’ where Ns is the number of impurities at the sur-

face levels, and is calculated in [1].

As seen from (2), the surface normal density in pure He* is proportional
to T5/3, The volume at normal density at low temperatures, as is well known,
is proportional to T Therefore at sufficlently low temperatures, the in-
fluence of the volume normal component on the surface phenomena can be neg-
lected and it can be assumed that there is only a surface normal density. This
is particularly clearly manifest in weak solutions. The surface number of im-
purities increases exponentially with decreasing temperature, and the density
of the impurities on the surface becomes atomlic if the concentration c¢ in the
volume is of the order of c n (T/eo)l/ exp(-e,/T). At T = 0. 1°K6 we get from
this an uncontrollably small concentration of the order 5 X 10‘1 . Thus, at
temperatures on the order of one tenth of a degree there exists a dense layer
of He?® on the surface of practically pure He

Let us consider the osecillations of a plane free surface with allowance
for the surface normal component. The equation of motion of the surface can
be written in the form
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where the system of coordinates is chosen such that the x axis coincides with
the direction of propagation of the oscillations, the z axis 1s normal to the

unperturbed surface, 1 = \)n(vnX - st) is the surface momentum, & the surface

tension, o the surface entropy, P the pressure of the liquid, and the function
z(x, t) determines the shape of the surface.

The first equation in (3) expresses the law of conservation of mass with
allowance for the fact that the surface mass can always be made equal to zero
by suitably defining the function g(x, t). The second equation is the law of
conservation of the tangential momentum, since 3a/3x is the tangential force.
The third and fifth equations express the fact that the entropy and the im-
purities are transported only by normal motion. The fourth equation is the
usual condition of equality of the normal forces.

The dependence of all the quantities on x and t is given by the factor
exp(ikx - iwt). The potential of the superfluid velocity ¢S in the volume
satisfies the Laplace equation, i.e., it is equal to ¢s = g exp(ikx + kz - iwt),

where a is the constant. In equation (3) it is therefore necessary to substi-
tute Veg = ika, Ve, = ka and P = —p¢s = iwpa. Writing the deviation of the

surface tenslon from the equilibrium value in the form
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and eliminating 6N_, 6o, and a from (3), we obtain
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where we have neglected terms that are certainly small at small w and k.

The system of equations (3) describes two types of oscillations. Oscil-
lations of the first type occur at Vhx = 0 and are ordinary capillary waves:

w? = (a/p)k’®. Oscillations of the second type occur at a practically immobile
boundary ¢ = 0 and have an acoustic spectrum w, = uk with velocity determined
by the equation

o Bu
u2=_._5_ =_-(- . (5)
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Oscillations of the second type are analogous to volume second sound, and we
shall call them surface second sound.

Using the well-known [3] temperature dependence of the surface tension of
He"* and the equallty 0 = -do/dT, we find the velocity of the surface second
sound in pure He"
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In the case of a solution, the surface tension has been calculated in [1]
and substitution in (5) gives u = (2T/m Y1/2 ) which corresponds to a speed of

sound in a two-dimensional monotonic 1dea1 gas. This result is valid at high
temperatures, when the impurities are far from degeneracy. If the impurities
are strongly degenerate, then the veloecity of the surface second socund is equal
to u = (N /m )(au/BN ), where p is the chemical potential of the impurities,

m: is the effectlve mass, which differs from m because of the Fermi-liquid
interaction between the impurities. Since at T = 0 the velocity u is of the
order of the velocity of ordinary sound, it is clear that the function u(T) has
a minimum at a certain temperature.

The presence of a volume normal component leads to a certain damping of
the surface sound. This damping 1s small if the frequency is not too low.
Namely, the following two conditions should be satisfied

w>> c( )\/— w>> ( )(’—) In —s(':—gslz '

where ag is the interatomic distance, © is the Debye temperature of the liguid
helium, 8 is the velocity of the second sound, M is the effective mass of the
impurities in the volume, and g is the acceleration of free fall.

At T = 0.1°K and at concentrations ¢ ~ 107¢ - 10~%, the surface normal
component can be regarded as atomic, i.e., Vo M/a2 and the written formulas

lead respectively to the conditions w >> 10% - 10° and w >> 1071

(we have put
@ = 10°K).

An experimental study of the surface second sound would be of great inter-
est, since it would make it possible to clarify the thermodynamic and kinetic
properties of a two-dimensional Fermi liquid.
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1. In the present article we discuss the possibility of realizing an ex-
perimental growth of the intensity of light waves as a result of nonlinear
interaction (Raman or parametric) with broad-band incoherent pumping.

2. Theoretical investigations of Raman and parametric processes in a noise
pumping field carried out to date, do not give the complete picture of the
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