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As ig well Mnowm, at high dencsities, nes sufficient for the

inverse [ process, the neutronization reacticn begins in metter "7, The firsi in the in-
. . s . . . L2 o .
T the kinctices of this procc wes mece by Frank-FKamenetsihii [ j. Durineg the time

of & star, owving to the neutronizetion of metter, only high-cnerzy neutrinos

2]

and thesc mey be exmerinentally detectable. In an earlier nole we consid-

»se of collapse with neutroniration of cold hydrogen. Esti

emely crude. An estimate under the assumption of an annusal collaps

stars in our galaxy with messes 2 - 3 times the sun's mass yielded a high-cnergy neutrino flux

with

(L0 - 20 MeV) emounting to several ver cent of the solar flux (the neutrino from
meximum energy 14 MeV). The neutrino energy was underestimated in the cited note., Lel us ob-
tein e more accurate exnression for the energy of the neulrinos produccd during the course of
neutroniration of helium.
The production of high-energy neutrinos unon collapse of o cold star is connected with
the vrocecss
e +He =T+ + v (1)

~
.
c

- PR P . o fn - - . r‘ N i~ ) = I . . P e
The threshold enevgy of this nrocess is § = 22,1 MeV = %31 me™. This reaction is followed by

-t

the "easier” resction ¢ + T = 3n + V. The course of the reaction (1) is modc cormlicated by
o A . - . . .
the fact that the HW nucleus does not exigt and that the neutronivation is accompanie
] b I
gion of a neutron. Nor does the H nucleus apperently exist like a virtual statc [ ]. It is

therefore naturel to assume in Pirst soproximation that the matrix element denends neither on

the neutrino energy nor on the neutron energy, nor on the angle belween them, and the probabil-

ity of the reaction is therefore assumed proportional to the phase volume.
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For & given density P, of electrons with energy I, the totel kinetic energy of the pro-
ducts of the reaction (1) is X - Q3 it is made up of the neutrino energy E, and the n + T
kinetic energy relative to the center of inertiaz of this system, El =5 -7 - Ev' The energ
motion of the T + n center of mass (of the order of 1 MeV) is neglected. Tn view of th? fact
sl
that T and n are nonreleativisiic particles, their phase volume is proportional to (El)l/L 4E. .
Thus, at a glven electron enersgy E and for @ given electron density Py the c¢ifferential pro-
bability of a onrocess with »roduction of a neutrinc in the energy interval from Eu to Eu + dEU

is of the form

. v oeme (o o yl/e
¢ = p K -E, (2 - q - E,) '€ aB, (2)
From this we obteain for the totel probsbility
E-Q - PN o
z l/ﬁ' - /’c z ,/,;'
R W R L S TC RN (L TER LA CU N (L )
0 \ V e

o]
where K and B are constants, E' and Q' the dimensionless energies expressed in units of me™,
end m=m .

e
To determine the constant B we use the analogy between the »rocess of interest to us
and the reaction

- L ,
u +He =T+n+ vV Or)

1) (51

. s iqs . . ~ o -1 .
The experimentally obtained probebility of this reaction, wp = 37C * 50 sec 7, pertains

which was investigated experimentally

to muons in the ls state in the nuclear field. Setting up an expression analogous to (3) for

the »robability W of a process with & i meson,
v

2, 2 /2
6 = 3l ()P - )T/ (5)

we obtein B. According to the universal weak interaction hypothesis, B should be the same for
the electronic and muonic vrocesses.
We now o from the reaction with an elcctron of specified energy E to the case of neu-
tronization by a degenerate relativistic electron gas:
EY
o) ) Ia} ey /o 2
Wy = (B/m)(h/mec) ~(mc‘)7/ I - Q')7~°E' 38!
1
“ , (6)
2 c\1/3
= I l o
Ep = me (P/pe 07)
Substitutin the expression for B obtained from ithe experimental data on the muon reaction, we

obtain

_ mo 3 - E!
T S i W T SR A ST LA
M ”TZ‘/H € H ! 18 H Q
e

(7)

= wu9.5(y - 1)9/2[0.15hy2 + 0.056y + 0.0121, y = EF/Q = (P/pex 1,7 x 1011)1/3
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It is assumed that the next act following the process ¢ + He =T +n + Vv, namely e + T =

= 3n + Vv, occurs practically instantaneously, in accordance with the fact that the nucleus T

is much weaker and more "friable" than He .

Using the relations for free fall

3/2

p= l/6wG(to - t)2 = (8 x 105)/(tO - t)2; at = 4.5 x 102p“ dp

we obtain an approximate equation for the neutronization kinetics (x is the fraction of the

, L
non-decaying He )
ax/dp = - 3 x 109(x/0 320 %) (px/2 x 100Y/31(1/Q Yo x/2 % 10°YY/3 - 179/2

1 yields p = p, = 1.7 x 1011, x = 1 (threshold);

p=TSp., X = 0.86; p= 15p,, % = 0.5; p = 60pt, x = 0.16. Neutronization of the bulk of the

i}

Integration of this equation from p =0, x

He' mass in the free-fall regime occurs at a Fermi energy double the threshold value, i.e.,
45 MeV. This means that neutrinos with energies up to 35 MeV are produced in the process

e +T=3n+v. Their registration probability is 10 - 20 times greater than that of the
threshold neutrinos from B8 decay expected to be observed in the spectrum of the sun; these
neutrinos can differ from the solar neutrinos, if the detector registers the neutrino energy

61

The emission of a neutrino with energy up to 35 MeV from a collapsing star occurs at a

and, albeit roughly, their direction

density on the order of 1012 - 1013 g/cm3. This density must be compared with the critical
(7, 9]

value
4 -
oy = 1.8 x 101“(M/M®) 2

at which gravitational self-closure takes place. Tt is clear that at masses less than 50 sun
masses, i.e., for the overwhelming majority of stars, the high-energy neutrinos produced by
neutronization have time to leave the star without becoming noticeably weakened by the gravi-

3

o
tational field. At the same time, the density p ~ 3 x lOlL g/em” is still appreciably smaller

than nuclear density, so that the analysis made above, without account of nuclear interaction,

(7]

is perfectly Jjustified. Concerning emission of thermal neutrinos following collapse see
. [10]
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1) The average number of neutrons in one event of the reaction u + He)’L is approximately
- 4 - '
1.2, from which it follows that the reactions up + He =D+ 2n+vandp +He =p+ 3n+V

constitute less than half of all the cases.
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Not all the concepts used in the theory of representations of the SU(2) group find their
generalization in the theory of representations of group SU(3). Among these concepts are the
symmetry of mirror reflection, which in the case of SU(2) group was developed in [1-4] l). In
the present note we indicate the possibility of introducing this concept into the theory of
group SU(3) representstions, and the practical utility of the corresponding symmetry proper-
ties for the calculation of the Clebsch-Gordan coefficients.

If we use the system of phases chosen in [5], then the gnalog of symmetry of mirror re-
flection in the theory of the group SU(3) can be the relation

+
e ({NILY) = (-1)IZ (l/e)Y@({N]'I'IZY) (1)
with
IT-T = -1-1 (2)

Here ¢ is the basis function of the irreducible representation {N} = (pq). I is the isospin
guantum number, IZ and Y are the quantum numbers of the projection of the isospin and they
hyvpercharge, respectively.

It is seen from (1) thet the substitution (2) denotes a transition from the representa-

{mw} . . (1)
1T Y, T'T'Y to the equivalent representation D=
z"? z

tion D T1 V. FITY? obtained from the former by
4 b4

z
adding the phase factor equal to minus unity raised to the power I + (1/2)Y + I' + (1/2)Y'.
Equation (1) leads to the relation
e ({1}, v) = e*({u}, V) (3)
where
v = IT Y, and v = I1Y

(I=-2, I =-1I, Y=-7Y) ()
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