(1965).
[10] Ya. B. Zel'dovich and I. D. Novikov, UFN &5, No. 3 (1965).
1) The average number of neutrons in one event of the reaction u + He)’L is approximately
- 4 - '
1.2, from which it follows that the reactions up + He =D+ 2n+vandp +He =p+ 3n+V

constitute less than half of all the cases.
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Not all the concepts used in the theory of representations of the SU(2) group find their
generalization in the theory of representations of group SU(3). Among these concepts are the
symmetry of mirror reflection, which in the case of SU(2) group was developed in [1-4] l). In
the present note we indicate the possibility of introducing this concept into the theory of
group SU(3) representstions, and the practical utility of the corresponding symmetry proper-
ties for the calculation of the Clebsch-Gordan coefficients.

If we use the system of phases chosen in [5], then the gnalog of symmetry of mirror re-
flection in the theory of the group SU(3) can be the relation

+
e ({NILY) = (-1)IZ (l/e)Y@({N]'I'IZY) (1)
with
IT-T = -1-1 (2)

Here ¢ is the basis function of the irreducible representation {N} = (pq). I is the isospin
guantum number, IZ and Y are the quantum numbers of the projection of the isospin and they
hyvpercharge, respectively.

It is seen from (1) thet the substitution (2) denotes a transition from the representa-

{mw} . . (1)
1T Y, T'T'Y to the equivalent representation D=
z"? z

tion D T1 V. FITY? obtained from the former by
4 b4

z
adding the phase factor equal to minus unity raised to the power I + (1/2)Y + I' + (1/2)Y'.
Equation (1) leads to the relation
e ({1}, v) = e*({u}, V) (3)
where
v = IT Y, and v = I1Y

(I=-2, I =-1I, Y=-7Y) ()
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Here {¥*} is the irreducible representation which is contragradient to the representation (N}.

A direct consequence of (1) is the relation

piyy) = o (5)

Relations (3) and (5) for the Clebsch-Gordan coefficients of the SU(3) group yield the fol-

[{Nl] (N} [N}r:' } [{Ng{} (%) {N*]Y] (©)

lowing property

Vl V2 v v

1Yz
Here ¥ is an additional parameter for the separation of repeated representations.

From the practical point of view, an important role is played by the case when the sub-
stitution (2) is applied to two columns of the Clebsch-Gordan coefficient with the signs of IZ

and Y unchanged. For this case we obtain

[_{_Nl] {N2} _(_N}YJ - (_l)Pl+ql+p+q+122+(l/2)Y2 [{Nl] {N2] {N]Y:I 1)
II Y
z

1,7 I1.,Y, L1,Y Ipl, Y, ILY

In view of the fact that the Clebsch-Gordan coefficient of the SU(3) group is equal to
the product of the Clebsch-Gordan coefficients of the SU(2) group and an isoscalar factor

(see [6]), the use of formula (9) in [1] or of formula (4.3e) in [3] leads to the following
relation
[[Nl] () EN}Y:I - (P (1/2)Y, [{Nl} () {N}Y] (8)
IlYl 12Y2 IY IlYl I2Y2 Iy

The use of the latter relation mekes it possible to reduce appreciably the computation labor

involved in expressing the isoscalar factor in terms of Pys 9p5 I., and Y. for specified wval-

1 1

ues of Pos Aos 12, and Y If tables are made up without the use of this property, as is the

case in [7], then relatiin (8) can be used to check the obtained formulas. We note that
in [7] the system of phases is such that in the equation corresponding to (8) the phase factor
should contain + ¢/2 in place of - Y2/2.

The substitution (2) can be interpreted as a mirror reflection of the isospin axis in
the plane perpendicular to this axis, as in the case of the group SU(2) (see [2]).

In addition to (2), in the case of the group SU(3) there are alsc the substitutions
p-q-2, g =-p-2 (9)

since the eigenvalues of the Casimir operators F2 and G3 are invariant against these substitu-
tions. As can be seen from (18) and (19) of [8], if we take it into account only that in (8]
rp + q is replaced by p, and q has the same definition as in the present note. It is easy to

establish phase relations under the substitutions (9) and to obtain a corresponding geometrical

interpretation.
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1) f s .
A misprint has crept into . In the fourth line from below of the third paragraph
in Sec. 386 "b" and (c) should be replaced by "c" and "d."

SPECTRAL CHARACTERISTICS OF A GAS LASER WITH TRAVELING WAVE
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Data were published recently on the possibility of obtaining single~mode operation of a
ruby laser in a resonator with traveling wave in one direction [l]. The results of this ex-
periment, in the author's opinion, prove that the ruby Rl line is uniformly broadened, the re-
laxation of the excitation along the crystal is small, and the main cause of the multimode
generation conditions in the longitudinal-mode regime is the uneven field distribution of these
modes along the ruby axis. The multimode nature of the gas laser is connected principally with
the inhomogeneous character of line broadening, when waves of different frequencies interact
with groups of excited atoms having different velocities.

This raises the question whether any additional "decoupling" of the longitudinal mode is
produced also by the difference in the positions of the nodes and antinodes of the mode fields
in the standing-wave resonator. To check on this, we constructed a gas laser for a wavelength
A = 6328 &, with a ring resonator, in which a traveling wave was generated with one propaga-
tion direction, the second direction being artificially attenuated, thus eliminating to a con-
siderable degree the spatial periodicity of the light-wave field. A diagram of the experi-
mental set-up is shown in Fig. 1.

The laser cavity was made up of three mirrors (2, 3, and 4 in Fig. 1), of which two have
a transmission of approximately 0.2 (2 and 3), while mirror 4 had a transmission 3.7. A
discharge tube (1) 4 mm in diameter was filled with a mixture of neon and helium in a ratio
1:5 at a total pressure 0.5 mm Hg. In this system there are generated traveling waves of two

directions - clockwise (A) and counter clockwise (B). To obtain a traveling wave in one di-

114



