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The principle whereby physical media are described with the aid of a certain tensor and
equations that relate the tensor with a metric, a principle realizable for media with energy-
momentum tensors of definite structure in general relativity, will be extended in this article,
within the framework of general relativity, to all media that differ from zero-curvature space-
time and are characterized by tensor invariants.

For this purpose, we introduce a tensor with the following properties:

(i) It is a rational function of a metric tensor and its first and second derivatives
linear in the second derivatives.

(ii) It satisfies the conservation law (the vanishing of the covariant divergence by
virtue of relations between this tensor and the metric tensor).

(iii) It vanishes if and only if space-time has no curvature.

The meaning of these requirements is obvious. The first two of these were used by Ein-
stein to find the tensor ij.

Apart from trivial transformations involving multiplication by a number and symmetriza-
tion, requirements (i) - (iii) define the following tensor:

Gikem = = Rikam * Mikam = (172)95 406
def -
Wikem = 95m%s ¥ %eBim = 9528km = IkmCje? (1
def def - def 2 def .2
Gikam = Iimdke = 952%me Cjk - Ryk - (W2)9pRe Ry ™= Ryps 6750 G
where gjk and Rjkzm are metric and Riemann tensors. In view of
Gikam = = Cgem = = Bikme T Gamjke Cjkem T Gjemk * Cjmke = O (2)
only 20 components of the tensor ijnm are independent, and from
G =0 (3)

kem| j

follows the vanishing of the covariant divergence with respect to k, 2, and m, too.

The tensor ij m turns out to have the remarkable property (not violated by symmetriza-

2
tion):

¢t =6t

ske = G5k = Gk (4)
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j.e., its contraction gives the Einstein tensor.

We propose that for an arbitrary medium the tensor G.k

skam should play the same role as the

tensor ij in Einstein's equations:

63 = = <Tsy (5)
This means that the macroscopic description of an arbitrary medium should be realized by a
fourth-rank tensor Tjkzm having the symmetry properties (2) and defining a metric by virtue of
the relations

Gikam = = <Tikam (6)

In view of (4), their contraction gives Einstein's equations (5). Consequently, the energy-

momentum tensor is a contraction of the tensor T Since (6) are differential equations

jkam*
with respect to the components of a metric tensor, the latter depends not on the local proper-

ties of the medium (described by T ), but by their distribution in space-time. Therefore

Jjkam

the tensor T like the tensor Tjk in Einstein's equations, expresses not the local proper-

jkam?
ties of the metric, but characterizes objects that differ from it.

In view of (3) and (5), there follow from (6) the relations:

j =
Toam|j = O (7)

which determine the distribution of the invariants of the tensor Tjkzm in space-time, i.e., the
equations of motion of the medium. Only 20 of these are independent, since the tensor Tjkzm
satisfies identities of the type (2).

Let us discuss some individual cases,

Media whose volume elements have a rest mass are characterized by the existence of a

unique local co-moving reference frame at each point in the medium. This takes place if and
& T
Media satisfying this condition can be called ordinary matter. The physical reference frame is

only if Tjk is a tensor whose time-like eigenvalue differs from the space-like ones.
always understood to consist of bodies made up of ordinary matter. Therefore the existence and
uniqueness of the co-moving reference frame signifies that motion of ordinary matter relative
to ordinary matter is uniquely defined.

The condition Tjk # 0, Ti = 0 is satisfied by an electromagnetic field.

Finally, when Tjk = “gjk’ where u is a constant, the medium has macroscopically the pro-

(417

between this medium and ordinary matter does not depend on the velocity of the latter (the re-

perties of vacuum any local reference frame is co-moving for it, so that any interaction

lativity principle), We shall call this medium p-vacuum. When u = 0 it constitutes ordinary
vacuum, The space-time corresponding to it is the Einstein space in the sense of Petrov []].
The three indicated media, which differ in the properties of the contractions of the ten-

sor T belong to the three main types of media predicted by general relativity. Let us

jkam?
consider a world of ordinary matter and an electromagnetic field in a w-vacuum. Within the
framework of the consequences of the system (6), there is a unique possibility of describing

gravitational interactions, viz., they result from transport, defined by the equations of mo-
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tion (7), of the invariants of the tensor T of u-vacuum. It is easy to show that the vacu-

um invariants which change in space-time caggg? be interpreted as being enerqy-momentum compo-
nents, since they do not influence the structure of the enerqgy-momentum tensor of u-vacuum
(for example, when p = 0 we also have Tjk = Q). From this point of view, such problems as the
determination of the density of the energy of a gravitational wave cannot have a solution. We
can speak only of loss or acquisition of energy by a system, made up of ordinary matter and an
electromagnetic field, interacting with the p-vacuum, In the latter, on the other hand, the
conservation and propagation laws have a form different than for matter with Tjk # “gjk’ The
vacuum invariants were studied by Petrov []]. In the particular case u = 0, their transport
was investigated by Pirani [2] and later by Ehlers and Sachs [3].

Inasmuch as Einstein's equations (5) follow from a system (6), the latter lead also to
the results which follow from Einstein's equations. The system (6), however, describes direct-
ly also processes in media which have the properties of vacuum, as well as in mixed media in
which a vacuum component is essential, whereas such processes can be described with the aid of
(5) at best only indirectly (for example, as a consequence of specifying the Cauchy data on
some space-like surface). Since, however, the system (6) conserves furthermore the unity of
geometry and physics, as is characteristic of general relativity, it seems to us that it can
be regarded as a natural possible generalization of Einstein's equations.

The author is sincerely grateful to A, Z. Dolginov and the participants of the seminar
under his quidance for a discussion of the work.
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We used an electron-optical shutter to modulate the Q of a neodymium-glass laser. This
shutter ensured a shorter Q-switching time than the previously used device with rotating
prism [1]. The components of the laser were: a mirror with reflection coefficient 98% at
wavelength 1,06 u, the shutter, and two neodymium-qlass (KGSS-7) rods each 120 mm long and 10
mm in diameter, with parallel end surfaces. The excitation was by means of two helical lamps
with pump enerqgy 8 kJ each and duration 600 uysec (at the 0.3 level). The shutter consisted of
two crossed polarized prisms and a Kerr cell, which was controlled by a pulse with a lifetime

2]

of 5 nsec and a duration 600 nsec. The pulse was generated with a long-line generator
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