ENERGIES AND RELATIVE INTENSITIES OF 2201, 2490, AND 2508 keV y LINES IN THE SPECTRUM OF Ga72

V. D. Vitman, B. S. Dzhelepov, and A. G. Sergeev
A. F. Ioffe Physico-technical Institute, USSR Academy of Sciences
Submitted 2 June 1965

The Ga^{72} γ -ray spectrum was investigated in detail by Johns et al. ^[1], using the photoelectrons and a double-focusing spectrometer, and by Vitman et al. ^[2] using the recoil electrons and the VNIIM (Metrology Institute) elotron. However, the intensities given in the two papers for the strong hard lines differ by 20 - 60%, which is way beyond the experimental error. Yet these lines are suitable for energy and intensity calibration of γ spectrometers.

We measured the 2201, 2490, and 2508 deV lines of Ga^{72} with the FTI (Physico-technical Institute) elotron for the purpose of obtaining more accurate values for their energies and intensity. To resolve the 2490 + 2508 keV doublet into its components (see the Figure) we used the shape of the 2201-keV line, since it has already been shown [3] that the line shape is independent of the energy if $h\nu \ge 1.5$ MeV. Our results are listed in the table, which contains for comparison the results of [1,2] as well as the results of Hegran and Lind [4]. We see that our intensity values corroborate the results of [2]. The values of the intensities of the hard lines given by Johns et al. [1] are apparently too high.

The 2462-keV line reported in [2] did not show up in our experiments. The existence of a line having this energy appears doubtful.

Energies and relative intensities of the 2201, 2490, and 2508 keV lines of Ga^{72}						
Our data		Hedgran and Lind ^[4]	Johns et al. [1] Vitman et al. [2]			
E, keV	^I rel	E, keV	E, keV	I _{rel}	E, keV	I _{rel}
201.3 ± 0.6	100		2201	100	2205 ± 4	100
490.6 ± 1.8	25.4 ± 1.7	2491 ± 3	2490	33.4	2490 ± 5	23.8 ± 2.2
2508.6 ± 1.0	50.5 ± 1.6	2508 ± 2	2508	56.5	2508 ± 5	51.7 ± 3.3

^[1] Johns, Chidley, and Williams, Phys. Rev. 99, 1645A (1955).

^[2] Vitman, Voinova, and Dzhelepov, Izv. AN SSSR ser. fiz. <u>27</u>, 249 (1963), transl. Bull. USSR Acad. Sci. Phys. Ser. 27, 261 (1963).

^[3] Sergeev, Voinova, Dzhelepov, Kalinichev, and Kaminker, PTE No. 5, 1965.

[4] A. Hedgran and D. Lind, Arkiv. fys. 5, 177 (1952).

EFFECT OF SPIN ON THE LONGITUDINAL MAGNETORESISTANCE IN INDIUM ANTIMONIDE AT 4.2°K

Kh. I. Amirkhanov and R. I. Bashirov Physics Institute, Dagestan Branch, USSR Academy of Sciences, Makhachkala Submitted 4 June 1965

The effect of spin on the longitudinal magnetoresistance for a degenerate electron gas with the carriers scattered by ionized impurities was considered theoretically by A. L. Efros [1]. He has shown that whenever

$$\zeta = h\Omega(N + \frac{1}{2}) + S\mu H$$
 $(N = 1, 2, ...)$ (1)

the component σ_{ZZ} of the conductivity tensor has sharp minima, and the experimentally measured quantity $\rho_{ZZ} = 1/\sigma_{ZZ}$ has sharp maxima. Here μ is the spin moment of the electron, N the principal quantum number, ζ the chemical potential, Ω = eH/m*c the Larmor frequency, and S = \pm 1. Thus, as in the transverse magnetoresistance, the spin should lead to doubling of the maxima. If the spin does not flip during the scattering process then, according to $\begin{bmatrix} 1 \end{bmatrix}$, no zeroth maximum 0^+ should be observed. The conditions for experimental observation of the influence of spin splitting of the Landau levels on the quantum oscillations of the resistance in a longitudinal magnetic field are the same as in a transverse field. We have observed earlier $\begin{bmatrix} 2 \end{bmatrix}$ the influence of spin splitting of the Landau levels on the transverse magnetoresistance in InSb.

Fig. 1. Plot of $\Delta \rho_{\parallel}/\rho_0(H)$ for samples 1 - 3.

In this paper we present experimental evidence of the influence of the spin on the quantum oscillations of the longitudinal magnetoresistance in indium-antimonide samples at 4.2°K. The results of measurements of $\Delta\rho_{\parallel}/\rho_0(\rm H)$ for samples 1 - 3 are shown in Fig. 1 (1 - n = 4 × 10^{16} cm⁻³, 2 - n = 7.35×10^{16} cm⁻³, 3 - 9.6×10^{16} cm⁻³). To identify the maxima, the measurements were made up to magnetic field values for which the oscillations vanished and $\Delta\rho_{\parallel}/\rho_0(\rm H)$ varied monotonically. Figure 2 shows the $\Delta\rho_{\parallel}/\rho_0(\rm H)$ curve for sample No. 3. The same figure shows for comparison the

 $\Delta \rho_{\perp}/\rho_0(H)$ curve for the same sample. The bars in Figs. 1 and 2 mark the positions of the experimentally observed maxima, while the indices 0^+ , 1^- , 1^+ , 2, etc. indicate the numbers of the maxima.

It is seen from Figs. 1 and 2 that the first maxima split into 1^+ and 1^- . Comparison with the transverse oscillations in the same samples show that the positions of the longitudinal and transverse maxima for N = 1, 2, etc. coincide quite satisfactorily.