2) The vaues of Ut(s)i used for the corresponding energies were the same as in [1’2].

In addition, we used the values of ( for 12 and 16 GeV/c and ( °t)f>p for 16 GeV/c

o)y
from [h]. P
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1. It is usually assumed that a system of excited particles with radiation wavelength
A < a (a - characeristic distance between particles) is equivalent to a system of non-coherent
radiators. In a regular crystal, however, there can exist in principle (even when A << a) ex-
cited states whose decay rate is many times larger or smaller than the rate of decay of the
non-coherent system.

Let us consider a crystal consisting of N identical nuclei with a low-lying isomer level,
and let one of the nuclei be excited. We express the ¥ function of such a state in the form
¥ = chmmm’ where P describes the state when the m-th nucleus is excited and the others are
in the normal state. Because of the identity of the nuclei, the state under consideration can
be specified in a large number of ways. If the position of the excited nucleus is strictly
defined, i.e., e, = BmO’ then the probability WO of emission of a 7y quantum per unit time will
be determined by the usual expression for the individual nucleus. On the other hand, we can
specify a delocalized state, for example in the form e = N-l/eexp(ig°zﬁp. In this case the
lifetime of the excited state will depend on the value of g. Calculating the probability of

emission of the y quantum, we obtain:

W= (Evt/h)fhilaﬁlzexp[i(s - 9)'2.,,,“2} (g, - Ek)'((i%)'§ W
m

Here M is the matrix element corresponding to the transition from the excited to the ground
state with emission of a y quantum.

If q or |g + 2n§l # ko/hc (b - reciprocal lattice vector), then W ~ WO/N in a non-
vibrating lattice, and thus the corresponding width Pl decreases macroscopically. Let q or
Ig + Eﬂkl =~ kO' We confine ourselves to an examination of crystals for which the following

inequalities are satisfied:
(2ﬂhc/aN1/3) >> T, i/t a‘ectNl/3 <1 (2)

If the first inequality is satisfied, the expression in the curly brackets is more
smeared out in momentum space, compared with the real energy smearing of the & function, which
is determined by the level width I' or by the observation time t. The second inequality, being
as a rule more stringent, implies that the linear dimension of the crystal is smaller than the
absorption length.

Taeking (2) into account, we obtain from (1):
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W wO:u\rl/C‘/(ka)2 (3)

Thus, there is & strong increase in the probability of y decay, accompanied by strong
peaking of the radiation along the vector g. Both the direction of this vector and the quan-
tity k, can be arbitrary here. (The width corresponding to conversion remains unchanged.)
These effects can apparently be observed, in principle, by pulsed excitation of the isomer
levels of the crystal nuclei (using the Mossbauer transition), i.e., by producing directly a
state with q = kO and then observing the intensity of the y radiation in the direction of the
incident beam and at an angle to it, or else by observing the effective change of the conver-
sion coefficient. (We note that the case of a strongly converted level is preferable.)

2. This raises the question whether a state with anomalously large radiation rate ap-
pears while the nuclei decay in the crystal (A < a), if at the initial instant all the nuclei
are excited (i.e., a state which is in some sense analogous to the "superradiating" state pro-

(1]

sion for the Hamiltonian that describes a system of two-level particles and their interaction

duced in a system with A > L , where L is the dimension of the system). The usual expres-

with the electromagnetic field, neglecting conversion and vibration of the nuclei, is
H = H, + H, }{0_(1/2)Eo (cm+l)
1 N P
1 - k) «C.
H . zizzl;{Moqngxp[i(g k) ;m] + c.c }— Y]

m k,q

PN, o

x  1f2\ ek
o, = N Zomexp(.;. ig-;m)
m

A At
Here 0> and 0 are the usual Pauli matrices. If we confine ourselves to that stege of the
decay when the number of nuclei in normal state, BN, is still small compared with N, then the
~t
operators o, can be replaced, in complete analogy with the theory of spin waves (2]

quantization operators with Bose commutation rules: 3; = 2gq and 3; = ab;. The creation of

, by second-

each y quantum is accompanied by the appearance of one normal state which has a non-localized
character and is actually a collective excitation (with negative energy) in a system of almost
completely excited nuclei. These Bose-type excitations will be called de-excitons. It is
clear that the state of the system is completely specified by the set nq of the de-excitons
occupation numbers, with the su.m):qnq equal to the number of emitted y quanta (we neglect here
the dispersion of the de-excitons).

We define in accordance with (] the number of decays per unit time, for a state char-

acterized by the set {nq}, by means of the expression

W((n)) = (2n/fz)§kz |M|2|Zem[i(g - 1)z, )% + 1)3(E, - By (5)
24 m

0
the picture changes radically. According to (5), spontaneous emission of photons is stimulated

At the initial instant nq = 0 and we arrive at the obvious result W= NW.. Later on, however,

emission with respect to the de-excitons, and the increase in the rate will depend on the
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values of the numbers nq. In accordance with (5), q can differ from k. only within the limits
2n/aN1/3. Consequently, de-excitons will be created in phase spece only in a narrow spherical

layer near q = kO’ the number of states being
~ bxkZ(2x) " 3(Na) (2n/ant/3) = (koa)2n%/3/x
Taking this result into account, we have for the state arising after BN decays
W= WolmBN*/3/(108) 2] (6)

Thus, the rate of decay increases macroscopically; in an ideal crystal this should hold for
perfectly arbitrary values of ko. It is alsc easy to find the time variation of the radiation

intensity by solving the equation

By =W (n +1) - n /v W = Wion/(koa) 2n2/3 o g Nt/®

(We have introduced here, purely formally, the relaxation term for the de-excitons; we have
hitherto assumed tacitly that 1/1q << wq.) It follows therefore that when wq > 1/-rq the radia-
tion intensity increases exponentially. We note that anisotropy of Wq causes immediately the
radiation to become sharply anisotropic.

(3]

state can be produced in a crystal only if the lattice and the nucleus are artificially chosen

3. In a very recent communication it is stated without proof that & "superradiating"
in such a way that ko = 2xb. We think that this conclusion is incorrect, because, as seen from
the foregoing, the effect can exist for arbitrary kO' Furthermore, the two other statements,
that the radiation intensity is proportional to NZ and that the radiation itself is directed
along the vector b, are likewise incorrect.

Similar statements concerning the need for satisfying the condition ko = 2nb to increase
the rate of decay of the nucleus and concerning the macroscopic peaking of the radiation along
the vector b, are contained also in [h]. Unfortunately, the main result, whereby the lifetime
in the decay of a spatially fixed excited nucleus decreases macroscopically if this condition
is satisfied, is likewise in error.

L. We note that the considerations presented above have an idealized character and the

analysis of the concrete cases calls for inclusion of many additional factors.
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