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Dmitrenko, Yanson, and Svistunov [l], in a study of the Josephson tunnel effect [2], ob-
served several singularities in the transition from superconducting tunneling to single-
particle tunneling in a magnetic field. These singularities are manifest in the fact that the
voltage-current characteristic of the tunnel junction consists of "steps,” the distance between
which along the voltage axis V is the same and does not depend on H, and the height of which
along the current axis depends on the applied magnetic field, assuming a maximum value in a
field proportional to the voltage of the step. In this paper we develop a theory of this

[3]), whereby these effects

phenomenon. We start from & hypothesis, advanced in (1] (see also
are caused by the interaction between the Josephson alternating current and the field of the
electromagnetic oscillations in a dielectric cavity between the superconductors.
The geometry of the tunnel junction is shown in Fig. 1.
X The magnetic field H is applied along the y axis, H = H&.
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Y Supercond. 2. I X Elln‘g is a'ccompalliEd by a Supel COllductlng
percond, <L~
current Wh.ose lnagn-l tlee, &CCOrdlng bo ’ i 8

!

- R =

I, = 3 sing (1)
Fig. 1 where @ is the phase difference between superconductors 1
and 2, When H# O and V £ O this current varies both in
space and in time, causing in turn the appearance of an alternating electromagnetic field. The

connection between the current and the field inside the junction is given by Maxwell's equation
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According to Josephson (2]
Ve, 0 < £ & Hln 0 - - B (3)

(AL is the London penetration depth, A, >> d).
Substituting (3) in (2) and using (1), we obtain the equation
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superconductivity (see [2’h]), and ¢ = c(d/Ze)\L)l/2 is the propagation velocity of the de-
(3,5]
).

is the square of the "Josephson depth of penetration” for weak

celerated electromagnetic waves in the insulating layer between the superconductors {see
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(3]

Equation (4), which is analogous to the corresponding equation of , generalizes the

Ferrel-Prange equation (4] to ineclude the non-stationary case. This equation can be used to
describe the interaction between the Josephson current with the electromagnetic field it gen-
erates., Actually, Eq. (4) is nonlinear, so that the amplitude of the produced field (3) can
be obtained in principle by solving this equation.

We investigate here the case when xj is large compared with the width £ of the Jjunction
(see (10) below). The nonlinear term Kazsinw in (4) can then be calculated by perturbation
theory. We note, however, that a term describing the damping must be added in this case to
the left side of (4); we write this term in the form -(1/@2®)(1/1)(d¢/dt), where T is the char-
acteristic relaxation time, proportional to the quality factor Q for the system (Q = wt). The

solution of (4) can be obtained in the form
o(z, t) = g0 - kz + wt + o(z, t) (5)

where k and @ are the wave vector and frequency of the Josephson current, and are proportional,
according to (3), to the external magnetic field H and to the constant potential difference V;
&(z, t) is a small increment. For the dc component of the Josephson current

V]

3= /)] iz, t)ez

(the bar denotes averaging with respect to time) we obtain (w # 0):

R

!
js(l/l)é cos(go - kz + wt)0(z, t)dz
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3o, 1) = js(az/ux§5\;i(a§ + 62 (6)
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where w are discrete frequencies (mn = 8(mm/!)) and e and b are the coefficients of the

expansions of sin(kz) and cos(kz) in seriers in cos(mnz/!) in the interval (0, !); their

values are 1- cos(k+ k)t 1 - cos(k - k)t
an = +
(k+ k)1 (k - k)¢
(7)
sin(k + kh)l sin(k - kn)l m
b = + H k = ——
n n 1
(k+ k)2 (k - k)1

The form of the dependence of 3 on w = 2eV/p is shown in Fig. 2. It consists of a series
of resonant maxima at biases Vn = hwn/Ze (we note that experiments in which the current is
specified and V is measured (see[l]) yield the dashed steps shown in Fig. 2). Near the
n-th "resonance" (w %=mn) the field distribution takes the form V'(z, t) = An(t)cos(nnz/l).

In this case V' has an antinode at the boundaries of the junction [l]. According to 1 , such
waves have the lowest losses, i.e., the largest Q, so that their intensity is large compared
with the other modes of oscillations. As seen from (6) and (7), the value of the n-th maximum
{step) at @ = w, is

3p () = 354/ 2mn) 2 F2(0/ o) ®)

where ¢ = 2Hklf is the magnetic flux inside the junction, °O is the quantum of the magnetic
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flux (= #Ac/2e), and Fn(x) is given by
lcosnx], n=1 3 5, ...

F (%) = (2/n)[% |x® - (v/2)2|]- ‘L (9)
|sinmx|, n=2, &, 6, ...
The formula obtained is valid, as is clear from its derivation, if 3n(H) is small com-

pared with js’ i.e., if

(£/2nmj)2Qn << 1 (10)

If the Q is not too large (Q < 10), then inequality (10) is satisfied even for relative-
1y thick junctions, ¢ ~ xj. According to (8), the dependence of the height of the steps on
the magnetic field is determined by the square of the function F (x), where x = o/o =

= (2en l/nhc)H. The functions F (x) are plotted in Fig. 3 (the dashed curves in the same
figure show the dependence of the Josephson de current JO at V= 0 on the magnetic field (6, 8]).
When n is large the function Fn(x) has a principal maximum approximately equal to unity at
X =~ n/2, and an infinite number of secondary maxima of much lower intensity (Fig. 3).

It is easy to see from (6) and (8) and from Figs. 2 and 3 that the results explain the
following experimental facts observed in [l]: 1) The multiplicity of the voltage steps, V =
= = (f/2e)8(mn/L); 2) the maximum height of the n-th step in a magnetic field proportional
to Vn, with H=H =~ Hn(e/EALd)l/ (ef. also [51) 3) the alternation of the minima and maxima
of the heights of the steps as a function of the magnetic field. In addition, formula (8) de-
termines the dependence of the heights of the steps on the magnetic field, & dependence which
can be verified experimentally. It is now desirable to carry out the experiments under condi-
tions in which the voltage V is specified and the current is measured, so as to observe a
voltage-current characteristic of a "resonant" type shown in Fig. 2.

In conclusion I am deeply grateful to I, M. Dmitrenko, I. K. Yanson, and V. M. Svistunov

for useful discussions and supplying the data of (1] prior to publicetion.
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It was pointed out in a recent paper (1] that the energy distribution of unstable parti-
cles w(E) may possibly correspond not to a first-order pole, as is usually assumed, but to a

pole of order n:

w (E) = C[(E - E)2+ (I/4)]" (1)

In order for these values of wn(E) actually to correspond to the energy distribution of
the unstable particle, it is necessary, of course 2], that the decay of such a particle be

.01 .
monotonic s lee.,
[an (t))/at <O, t € [0, ) (2)

where Ln(t) = Ipn(t) |2 is the law of decay of the unstable particle with energy distribution
(1). In (2 we presented a complete description of all the energy distributions w(E) of the
unstable particles, i.e., all the w(E) for which the monotonicity condition is satisfied. We
can prove, by verifying the necessary and sufficient conditions indicated in [2], that the

wn(E) belong to the class of energy distributions of physical systems.

It is simpler, however, to prove this directly. It was shown in (1] that 2)
r n-£-1 (n+ £ - 1)¥n - 1)
P (t) - t Z( [ [ (5)
;, gt (n-17 -1 en - 2)!

and consequently
- on=1
()  p 1 ﬂrz<g nkl ny k- 1)i(n- 1)
T ne’q’i 3 % n - kK- 1)'ki(2n - 2)!
k=0 (%)

n-£-1 (n+ £ - 1)¥Hn - 1)! i n£2(_l_l( £ - Dt(n - 1)1
ii() (n-1 -0 2n-2)7 "~ z = "'I(IF‘-“ITTS.EJF:(en-e):n l}

87



