a perfectly realistic requirement for the conditions of this experiment.

The weakening of the field in the center of the discharge by the skin effect can
lead to a decrease in the average energy of the electrons in this region, accompanied by at-
tenuation of the radiation intensity on the axis while the overall intensity increases. The
maximum of the intensity should shift in this case to the peripheral zone. To check on this
assumption, we made additional measurements with a narrower radiation beam at a pressure (0.53
mm Hg) corresponding to the most pronounced maximum. We obtained the ratios of the radiation
intensities (3) of the annular and axial zones of the plasma. This ratio is shown in Fig. 2
as a function of the discharge power. At U5 watts, corresponding to the start of the decrease
of the curves on Fig. 1 at microwave power, & begins to decrease rapidly, showing that the
maximum of the intensity shifts to the peripheral region and confirming the foregoing assump-

tion.

{1] V. S. Nikol'skii, Byulleten' izobretenii (Bulletin of Inventions) No. 22 (1961).

SELF FOCUSING OF WAVE BEAMS IN NONLINEAR MEDIA

V. I. Talanov
Scientific Research Redio Physics Institute, Gor'kii
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References (1,2] contain calculations of cylindrical self-maintaining waveguide channels
(2- and 3-dimensional) in an isotropic nonlinear dielectric with wave number k = k[e(Eé)]l/e

(k = ((x)/c)nO is the wave number as E. » O, and E, is the field amplitude). We discuss below

0 0]
certain features of paraxial wave beams in such a medium in the case of weak nonlinearity of
€: D
€e=1+ e'Eg; e'Bf <<1; e'>0 (1)

Under the assumptions customarily made in quasi-optics concerning the character of the
wave beam [2], which make it possible to disregard the polarization effect and the longitudinal

diffusion in the ray amplitude for E, and the slowly varying part ¢ of the phase beam

0
E= Eoexp(ikz - ip + iwt), we obtain the following equations (in dimensionless coordinates kx,

Ky, kz)
OES/0z = ~div (BfV,9); 29 + (V,9)% =€ .. -1 (2)

€opr = €(E2) + (8B /E) (3)

which are equivalent to the equation for the transverse diffusion of the ray amplitude of the

field [3]. A consequence of (2) is the following equation for paraxial rays

1
T) =5V err (%)

138



according to which the first term in (3) determines the refraction of the rays in an inhomo-
geneous dielectric, and the second determines their diffrection bending.

For a specified beam profile, we can asses from the character of the right side of (&)
the degree of focusing (or defocusing) as the beam enters the nonlinear medium. Thus, when a
beam with & transverse profile similar to that of a stationary {cylindrical) beam (1,2] is
incident on a plane boundary of a nonlinear medium, it becomes focused over the entire cross
section when the total power is P > Pst and defocused when P < Pst’ where Pst is the power in
the nonlinear medium of a stationary beam having the same dimensions as the incident beam. We
note that in the two-dimensional case the power Pst is inversely proportional to the width a,
while in the three-dimensional case it is independent of the width of the beam (when ka >> 1).

When e'E% >> (kAl)‘z, where Al is the characteristic scale of variation of the field in
the cross section of the beam, we can neglect the term ALEO/EO in (2) (geometric-optics approx-
imation). One of the solutions of practical interest in this is a spherical wave with variable
center of curvature

9 = [K(z)r2/2] + 9y(2); €'Ef = 29} + r*(K' + K7) (5)

an analysis of which discloses many singularities in the beam structure at the maxinum (mini-

mum) of the field. It can be shown that

K(z) = D(z = zo)/l + D(z - zo)2 (6)

The constants D and z, are determined by the structure of the beam (5) on the boundary z = O
of the nonlinear medium. Beams described by expressions (5) and (6) are qualitatively differ-
ent when D > O (defocusing profile €(z = 0)) and when D < O (focusing profile e(z = 0)). They

are shown schematically in Fig. 1. The
points zy » = z; & IDI-l/2 of Fig. 1b are
focal points, and solution (5) is not

valid in their vicinity. Therefore the :::::::::::

\

beam sections separated by these points

)

in Fig. 1b must be considered independent- a) >0

ly. The passage of the beam through the
focus calls for a special analysis, which Fig. 1
is beyond the limits of the employed approximation.

The most significant aspects of the phenomenon of self focusing of beams, with account
taken of the diffraction term ALEO/EO in Eq. (2), can be explained by using the following

approximation of e(ES):
€-1=¢c"E2=c'E2r e'r§(1+31nf)se'}:§? (7

where f = E%/Eﬁ, with E, the value of the field at the maximum of the beam. When B = (s -~ 1)
x (1n s)”1, the approximating function T coincides with f at two points, f = 1 and £ = s. The
functions differ most in the interval (1, s) at the point f = B, by an amount 1 - B(1 - 1n B).
When s = 0.3 (B = 0.6) the difference does not exceed O.1l. Choosing s equal to this value,
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we can use the approximation (7) for the central part of the bounded beam.

a) aj

10

a) g<1 4) g>1
Fig., 2 Fig. 3

The approximation (7) enables us to find a solution of Eq. (2) in the form of Gaussian

beams

By = By o0 (- 2 - %)

By making the substitutions x = oa and y = Bb (0 and B are constants for each ray tube) we then
obtain from (4) equations for & and b. For a two-dimensional beam (b - =), and also for a
three-dimensional symmetrical beam (a = b), we get

g =2a"3[1- gla)] (8)

where g = P/P P is the beam power, and P_ (a) is the power of the stationary beam, char-

st?
acterized by the parameter a. The power of the two-dimensional beam is P( )(a) eny
x (8/7Be'k%a)"! (a is dimensional), while the power of the three-dlmensional beam is P(E)

st
= cno/BBe'k2 and is independent of its size. The values presented differ only by a numerical

factor of the order of unity from the corresponding values for stationary beams that are rig-
orous solutions of (2). The phase portrait of Eq. (8) is shown in Fig. 2 for a two-dimensional
beam and in Fig. 3 for a three-dimensional beam. a in Fig. 2 is the radius of the stationary
beam. When g < 1 the three-dimensional beam always becomes defocused (Fig. 3a), and when
g > 1 it is focused, under suitable initial conditions, at some point on the z axis (Fig. 3b),
as in the geometric-optics approximation. The position of the focus depends on g. On the
whole, the ray patterns for g < 1 and g > 1 are qualitatively the same as in Figs. la and 1b,
respectively.

The behavior of the three-dimensional beam in the vicinity of focal points is not de-
scribed by the foregoing equations. Phenomenologically, ideal focusing can be avoided in the
three-dimensional case by assuming that P(B)

st
1y small values of a. In practice, however, the required beam defocusing action will occur at

begins to increase with decreasing a at sufficient-

field intensities for which effects not accounted for here, nonlinear absorption of the beam
energy and of the breakdown of the dielectric, become significant. In particular, the passage

of a three-dimensional beam through a nonlinear dielectric can be accompanied by the formation

no
~—

of several sparks at the points of successive focusing of the beam.
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1) In the optical band the parameter €' of many dielectrics has values 10713 - 10712

2]

S. B. Mochenev reported to the author that he observed such a phenomenon when an in-

cgs esu
2)

tense beam of light (A = 1.06 u) was focused in water and in carbon tetrachloride.

GENERATION OF ULTRAVIOLET RADIATION BY USING CASCADE FREQUENCY CONVERSION

S. A, Akhmanov, A. I. Kovrigin, A. S. Piskarskas, and R. V. Khokhlov
Moscow State University
Submitted 8 July 1965

At the present time the only way to obtain intense radiation at wavelengths shorter than
0.7 p is to use nonlinear-optics methods. We report here some results of an experimental in-
vestigation aimed at producing radiation sources in the 0.53 - 0.26 pu band, with output power
not lower than 3 - 5 MW. To cover this band, we used cascade conversion of the frequency of a
neodymium~glass laser. A block diagram of the experimental set-up is shown in the Figure.
The radiation from the neodymium-
glass laser, with Ay = 1.06

. . *=02650
and with power P; (its resonator AP
was Q-switched with a rotating _ =05y Fl F2
prism), was subjected to succes- £ ool PP
sive nonlinear transformations in ~ ¢ A=108p Ay=Qasp
KDP or ADP crystals. All the kop
transformations were made in un- F3

focused beams. In the first KDP

cerystal (length £ = 3 cm) the

laser frequency was doubled (output wavelength Ap = 0.53 u). The power P, of the harmonic was
sufficient for further effective frequency conversion; this was effected either by another fre-
quency doubling (in which case the output was the fourth harmonic of the fundamental radiation
Ag = 0.265 j, with power P4), or by mixing the frequencies of the fundamental radiation and
the second harmonics (thus generating the third harmonic of the fundamental radiation Ag

= 0.353 u, with power P3). The lengths of the corresponding nonlinear crystals were 2 - 3 cm.
Using stimulated Raman scattering at Ay or Ap (see [2]), we can obtain a set of discrete
spectral lines, the distance from which to Az or A4 is equal to the corresponding frequency of

the molecular oscillations. The intensity of the Raman scattering lines was 5 - 10% of the
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