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[1) fo11owing amplification

The reported observation of an additional ultrasonic signal
of 107 cps transverse oscillations by carrier drift in a CdS crystal has aroused great interest.

The anomalous signal passed through the crystal at a velocity smaller by & factor 1.3 -
1.6 than the ordinary signal. This gave grounds for suggesting that a collective phonon wave
was observed, similar to "second sound" in helium [1-3]. Very simple estimates show, however,
that at room temperature and at the conductivities employed in [l], the elastic oscillations
(with frequencies on the order of 101° - 1011 cps) whose amplification can lead in accordance
with [1-3] to the existence of "second sound" are damped much more by the lattice anharmonici-
ty than they are amplified by the carrier drift. This circumstance was already noted in [h]'

We shall show in the present note that the appearance of the anomalous signal can be
interpreted as some diffraction effect, caused by the anisotropy of the amplification coeffi-
cient, This phenomenon is similar to birefringence, where a wave with anomalously low front-
propagation velocity likewise exists; in our case, however, the anisotropy of importance is
not that of the real but of the imaginary part of the wave number.

Assume that electrons move along the z axis with drift velocity v in a medium occupying
the half-space z > 0, vwhich is elastically isotropic. A plane ultrasonic wave, propagating in
the medium at angle 8 to the z axis, will grow [5,6] if v cos6 > s, where s is the speed of
sound, and the amplification coefficient will depend on the angle 8. Confining ourselves
for simplicity to a longitudinal wave, let us investigate the radiation produced in the given
medium by an infinite plate situated at z = O and vibrating with frequency w. Each point on
the plane z = O can be regarded as a source of spherical waves, which are amplified as they
propagate, with different amplification coefficients in different directions. The displace-
ments produced at a receiver located a distance z from the radiating plane by the elements of
a ring seen from the reception point at and angle 6 are equal to

kz ) + a(8)z

cosé cos@ ]-as

du = A cosfz  texp[i(wt -

where A is a constant, o is the amplification coefficient, and
k=ws"1; 45 = 2nz tanfd(z tansd)
Integrating with respect to 8 and introducing the symbol p = l/coss, we obtain

U(z) = 2nA[z exp(i(wt - kzp) + a(p)zpldp (1)
1

Knowing the dependence of o on p, we can obtain the field (1).
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We shall carry out a concrete calculation for the simplest case of a cubic crystal, as-
(7]

suming that the amplification is at the expense of the deformation potential . We assume
that a major role is played by traps with wrt < 1, where T is the relaxation time of the con-
duction electrons with respect to the traps (such an inequality was apparently satisfied

in [l]: see [8-9]). [8-10] that a(8) ~ &, = const when 6 < @

Then we can readily find from o
and a(8) < O when 6 < @

o

o* In this case we obtain approximately

u(z) = D{exp[i(wt - kz) +aozj} - exp[i(wt - :;Z)seo) + czg:o }} (2)

vwhere D is a constant. Thus, two elastic waves propagate simultaneously in the medium, with
velocities s and s coseO respectively; the second wave produces the anomalous signal. The
velocity difference is connected with the fact that in the anomalous wave energy is trans-
ported (with the speed of sound) at an angle 8, to the direction of the front. We see from
(2) that under our assumptions the anomalous wave can have a much larger amplitude than the
ordinary wave. This makes it especially interesting and desirable to set up an experiment
with cubic crystals, where the assumptions of the theory are well satisfied. In the case of
piezoelectric crystals, an account of the anisotropy of the elastic and especially of the
piezoelectric properties is of course indispensable for gquantitative deductions.

(1]

with the theory presented above. Unfortunately, the character of the dependence of this velo-

The velocity of the anomalous wave observed experimentally in agrees qualitatively
city on the carrier drift velocity is not discussed in the cited paper. We note that the con-
ditions for the observation of two non-overlapping (ordinary and anomalous) pulses is of the

form

L1l (3)

ot < s coseo

where L is the length of the crystal and At is the pulse duration.

The phenomenon considered here can be given a very lucid interpretation. If we assume
that the character of the amplification is such that practically the entire radiation from a
point source in the medium is concentrated in a cone of vertex angle 90, then each point with
2z > 0 will receive radiation only from a disc whose axis passes through the point of observa-
tion and which is seen from the latter at an angle 90, Just as if the radiation were that of
a plane wave normally incident on an opaque screen and passing through a round hole in it.
Accordingly, when condition (3) is satisfied, two signals should be observed at the reception
point: the direct signal passing through the hole, and the signal diffracted by the edge of
the hole. The corresponding calculation for the case of pulsed radiation from & disc is con-
tained in [ll].

In conclusion we note that a perfectly analogous phenomenon, the reception of two sig-
nals, will occur also if the damping coefficient has a suitable anisotropy and there is no
amplification. We have thus established the existence of two waves, ordinary and anomalous,
for the case when the imaginary part of the wave vector is anisotropic, both when waves are

amplified and when they are attenuated.
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Analogous phenomena should be expected also when waves of arbitrary type propagate in
a medium in which the properties that govern the propagation of waves of this type exhibit
anisotropy.

The author is grateful to Yu. L. Gazaryan, M. A. Isakovich, and I. A. Urusovskii for

valuable advice and for a discussion of the results.
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This paper is devoted to an experimental investigation of the structure of the front of
a strong magnetic-sound wave propagating in a rarefied plasma transverse to & magnetic field.
In laboratory experiments, an essential factor for such waves is the nonstationarity of the
wave motion.

A theoretical description of nonstationary magnetic-sound wave of finite amplitude is
the subject of [1_3]. In [1] Adlam and Allen solved numerically the problem of unsteady mo-
tion of a magnetic piston in a rarefied plasma for two concrete time variations of the mag-
netic field on the plasma boundary:

H(t)=1+at (1)

H(t) =1+B[1- exp(-at )] (2)

Here H = H/Hb is the magnetic field normalized relative to the constant field Hy; t = t/'rei

is the time normalized relative to Tei = © [mM]l/E/eHO, while @ and B = Hn(w) - 1 are constants.
For o = 1 and B = 1 the authors found the profile of the magnetic field in the plasma at

certain values of tn. They showed that in case (1) the magnetic-field front, which increases

linearly on the plasma boundary, is transformed inside the plasma into an exponentially growing
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