izing the degree of CP-parity nonconservation and M_d is the CP-odd part of the direct photon emission amplitude. Analogous remarks apply also to the decays $K^{*\pm} \to \pi^{\pm} K^{0}(\overline{K}^{0}) \gamma$ and $K^{*\pm} \to K^{\pm} \pi^{0} \gamma$. We note only that the difference in the form of the spectrum of the particles and antiparticles is large in the case of K^{\pm} mesons, since M_b for $K^{\pm} \to \pi^{\pm} \pi^{0} \gamma$ has an additional degree of small-ness, due to the rule BT = 1/2. The authors are deeply grateful to L. B. Okun' for many valuable remarks. - [1] L. B. Okun', YaF 1, 938 (1965), Soviet JNP 1, 670 (1965); J. Prentky and M. Veltman, Phys. Lett. 15, 88 (1965); T. D. Lee and L. Wolfenstein, Preprint, CERN, 1965. - [2] Bernstein, Feinberg, and Lee, Preprint, CERN, 1965. - [3] N. Cabibbo, Phys. Rev. Lett. 14, 965 (1965). - [4] J. Good, Phys. Rev. 113, 352 (1965). ON THE MASSES OF PARTICLES (RESONANCES) WITH STRANGENESS S = -4 AND S = +1 Ya. B. Zel'dovich Submitted 5 August 1965 Harari and Lipkin [1] considered several properties of a hypothetical baryon 35-plet, which according to the SU(3) symmetry contains particles with strangeness from S = -4 (Y = -3) up to S = +1 (Y = +2). In the quark model, this supermultiplet differs in the fact that it is made up of four quarks and one antiquark (see the Table below). We should therefore expect a non-monotonic variation of the particle mass as a function of the strangeness S or hypercharge Y. In fact, in the 35-plet the excited nucleon state 1 with isospin $5/2^-$, 1 is made up of quarks, such as 1 p, 1 is 1 pp, The state X_1 (S = -4, I = 1/2) is constructed like $4\lambda \bar{p}$; $4\lambda \bar{n}$ and it is natural to assume that X_1 is heavier than N_5 , just as Ω is heavier than Δ in the decuplet, and just as Ξ is heavier than N in the octet; an intuitive common cause is the assumption that λ is heavier than n and p. Thus, we expect a normal dependence of the mass on S or Y in the series N_5 . . . X_1 . Let us turn to the state I_4 (S = +1, I = 2), which in terms of quarks is represented by $4p\bar{\lambda}$; . . .; $4n\bar{\lambda}$. If λ is heavier than p and n, then $\bar{\lambda}$ is also heavier than \bar{p} and \bar{n} and we can therefore expect I₄ to be heavier than N₅; consequently, the quark model predicts here for the mass a strangeness dependence opposite from that which takes place in the octet and decuplet of baryons (but similar to the situation in mesons). However, such a situation does not contradict the existing concepts concerning mass splitting. Within the framework of the Gell-Mann--Okubo formula $$M = a + bY + c[I(I + 1) - 1/4 Y^{2}]$$ (1) simultaneous satisfaction of the conditions $M(X_1) > M(N_5)$; $M(I_4) > M(N_5)$ is possible, but requires that c < 0; in the quark model this is characteristic of the 35-plet. Experimentally, for the baryon octet, as is well known, c = +39 MeV, is positive, and is not connected with the difference in mass between λ and n or p. We can offer one more qualitative argument in favor of the assumption that c<0 in the 35-plet: let us compare N_3^* and N_5^* . The states N_5^* consist only of p, n, \bar{p} , and \bar{n} (for example, $N_5^{*++} = (4/5)3pn$, $n + (1/5)4p\bar{p}$ - we present here the squares of the Clebsch-Gordan coefficients). This is seen from the fact that they are obtained by isotopic rotation from $N_5^{*+++} = 4p, \bar{n}$. The states N_3 contain also λ and $\bar{\lambda}$. Since λ and $\bar{\lambda}$ are heavier than p, \bar{p} , n, or \bar{n} , we expect N_3 to be heavier than N_5 , corresponding to c < 0. On the other hand, in the octet the state with the larger isospin Σ is heavier than the state with the smaller isospin Λ for equal S and Y, i.e., c > 0. We assume that the mass difference between λ and n or p plays the principal role ²⁾, and put m₁ - m₁, p = μ , and also m(N₅) = m₀, m(X₁) = m₀ + 4 μ , and m(I₄) = m₀ + μ . Comparing with (1), we obtain $$6b = 3c = -\mu. \tag{2}$$ From consideration of the decuplet we obtain μ = 146 MeV, while consideration of the octet yields μ = 191 MeV. The authors of $^{[1]}$ identified * with the resonance near 2400 MeV, and * with the resonance near 1500 MeV. Actually, however, they apparently observed (see $^{[2]}$) the resonance at 1560 ± 20 MeV with decay to $p + \pi^+ + \pi^+$, thus relating it to N_5^* (the maximum charge in N_3 is obviously +2). Using the values obtained above for the constants b and c in formula (1), we get the following mass table: | Particle | Y | S | I | M, MeV | Decay | Threshold, MeV | |-----------------------|----|------------|-----|--------------------|--------------|----------------| | I ₄ | +2 | +1 | 2 | 1716-1760 | КлП | 1570 | | N ₅ * | +1 | 0 | 5/2 | 1570 | ллN | 1210 | | N* | +1 | 0 | 3/2 | 1814-1890 | ЛЛN | 1210 | | Y_{4} | 0 | - 1 | 2 | 1716-1760 | ガルハ | 1385 | | Y2 | 0 | -1 | 1 | 1910-2015 | <i>х</i> πΛ | 1385 | | \mathcal{Z}_{3}^{*} | -1 | -2 | 3/2 | 1863-1951 | រារា ឱ | 1590 | | Ξ_I^* | -1 | - 2 | 1/2 | 2009 - 2141 | <i>ਜ</i> π € | 1590 | | Ω_{2}^{1} | -2 | -3 | 1 | 2009-2141 | πΩ. | 1820 | | Ω_2^* | -2 | -3 | 0 | 2106 -227 0 | ππΩ. | 1950 | | X_{I}^{\prime} | -3 | -4 | 1/2 | 2155 -23 32 | ŔΩ | 2180 | | | 1 | 1 | | | | | In column M are given two values in MeV, corresponding to the two assumptions concerning μ . The last columns contain the decay schemes allowed by SU(3) symmetry, as given by Harari and Lipkin [1], and the corresponding thresholds. We see from the comparison that only X_1 has a chance of being stable to the strong decay. Along with the search for X_1 (S = -4), the greatest interest is attached to searches for a baryon with positive strangeness I_4 (S = +1). The expected threshold of the reaction $$N + N = I_4 + \Sigma$$ in the laboratory system (one of the N is at rest) is of the order of p_N = 4 BeV/c, and for π + N = I₄ + K the threshold is p_{π} = 2.2 BeV/c. A reaction of particular interest is $$\pi^{+} + p = I_{4}^{+++} + K^{-}, \quad I_{4}^{+++} = p + \pi^{+} + K^{+}.$$ I take the opportunity to thank L. B. Okun' for a discussion. - [1] H. Harari and H. J. Lipkin, Phys. Rev. Lett. 13, 345 (1964). - [2] S. Nikitin, Paper at the 9th Internat. Conf. on High-energy Physics, Dubna, 1964; Alexander, Benary, Reyter, Shapira, Simonpoulou, and Yekutieli, Phys. Rev. Lett. 15, 207 (1965). - 1) The index is equal to double the isospin (2I) throughout. - The example of an octet with splitting $m(\Sigma)$ $m(\Lambda)$ = 78 MeV shows that the foregoing assumption is of rather low accuracy; all the mass estimates presented below are quite crude. $\begin{array}{lll} \star I_{4}(+3_{g0}-1); & \circ -N_{3}^{*}(+3_{g0}-2); & \Delta -N_{3}^{*}(+2_{g0}-1); & \nabla -Y_{4}(+2_{g0}-2); & \circ -Y_{2}(+1_{g0}-1); \\ \star S_{3}^{*}(+1_{g0}-2); & = -S_{1}^{*}(0,-1); & 1-\Omega_{2}(0_{g0}-2); & -\Omega_{0}(-1); & 0-X_{1}(-1,-2) \\ & \alpha = 4n\bar{\lambda}; & \delta = 4p\bar{\lambda}; & c = 4n\bar{p}; & \alpha = 4h\bar{p}; & c 4h\bar$ ## APPENDIX For reference purposes, we present in coordinates I_3 and Y the 35-plet scheme of [1]. The particle designations and compositions are listed in the caption, where the parentheses contain the electric charges of the particles. SPLITTING OF EPR LINES OF Cr3+ IN ZnWO4 BY AN EXTERNAL ELECTRIC FIELD A. A. Bugai, P. T. Levkovskii, V. M. Maksimenko, M. V. Pashkovskii, and A. B. Roitsin Semiconductor Institute, Ukrainian Academy of Sciences Submitted 6 August 1965 The paramagnetic ion Cr^{3+} in xinc tungstate replaces the Zn^{2+} ion [1]. The position of the Zn^{2+} ion in the crystal [2] is not a symmetry center relative to inversion (point group