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It was predicted in [1] that opposing ferroelectric domains can be pro-
duced in semlconducting ferroelectrics by an injecting contact field. The for-
mation of these domains should lead to a number of singularitles in the electric
characteristics of the ferroelectric, such as nonmonotonic distribution of the
potential, jumps of the electric conductivity, ete. According to [2], analogous
phenomena can appear also in a ferroelectric under the field effect. Obviously,
these phenomena are particularly easy to observe in the presence of barrier
contacts (e.g., Schottky contacts [3]), which ensure, under definite conditions,
both carrier injections (Schottky emission) and the field effect (the depleted
layer can be regarded as a "dielectric" insulating the metallic contact - "field
electrode").

One of the main consequences of the existence of opposing domains 1s the
nonmonotonic distribution of the potential along the ferroelectric axis of the
crystals [1]. It can be observed in principle by a probe method, but such meas-
urements, performed on SbSI [3, 4] and BaTiOs; [5], revealed no singularities of
this type. We investigated qualitatively the distribution of the potential in
SbSI single crystals by methods of raster electron microscopy [6]. We used the
ISM-U3 raster electron microscope operating in the secondary electron emission
regime. The investigations were carried out in the ferroelectric and in the
para-phases at different voltages on the samples, on which Sb contacts were
sputtered on the {110} face; the direction of the external field colncided with
the direction of the C axis.

The measurements performed in the para-phase have shown that the external
voltages concentrated mainly at the anode (Fig. la). This can be readily under-
stood by recognizing that the electric conductivity of SbSI is of the p-type
[3, 8, 9]. For the ferroelectric phase there appear in the potential distribu-
tion a number of singularities connected with the occurrence of spontaneous
polarization and with the existence of a preferred direction, the presence of
which causes, in the absence of an external field, the spontaneous polarization
to have a definite direction (this polarization can be readily revealed by the
pyroelectric current). In the absence of voltage, in the ferroelectric phase,
as well as in the para-phase, one can see jumps of the contact potential near
the electrodes (Figs. la and b; U = 0). When an external field opposing the
spontaneous polarization is turned on, at relatively low voltages (U < 20 V),
the entire applied field is concentrated at the anode (Fig. 1b). With increas-
ing voltage, the external field begins to penetrate into the interior of the
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Fig. 1. Distribution of the current den-
sity of secondary electrons over the sur-
face of an SbSI crystal (Curie tempera-
ture +21.5°C) at different values of the
applied voltage (U). Width of contact
gap - 1 mm. The vertical arrows denote
the boundaries of the contact: a - para-
phase; T = 60°C. Upper curve U = 0;
lower curves U = %100 V (the main volt-
age drop is concentrated at the anode);

b - ferroelectric phase; T = 18°C, the
external field is connected opposite to
the spontaneous polarization, U = 0, 10,
20, b0, 60, 100 V (reading downward, re-
spectively); ¢ - T = 18°C, U = %40 V (at
U = +40 V the external field is connected
opposite to the spontaneous polariza-
tion); 4 - electron microphotograph of
the boundary of the opposing domains (the
boundary is indicated by the horizontal
arrows).

sample, and at a certain value of the voltage a negatively charged region is
produced in the crystal (Fig. 1d), thus evidencing a nonmonotonic distribution
of the potential in the contact gap. This is illustrated (Fig. 1b, U = 40 and
60 V) by the inhomogeneous secondary-electron current-density distribution,
which is directly connected with the distribution of the potential in the
sample [7]. According to the concepts of [1], this is due to reversal of the
polarization of the near-anode region of the ferroelectric and to the occur-
rence of opposing domains. It is interesting that the near-anode barrier layer
disappears following a change of direction of polarization in the near-~anode
region, and the applied voltage becomes entirely distributed in the volume of
the SbSI. The influence of the polarization on the height of the contact bar-
rier is evidenced by the rectification of the current in a polarized sample with
symmetrical contacts; in fields weaker than coercive, the current through the
crystal is maximal if the field is opposite to the polarizing field. The maxi-
mum rectification coefficient reaches 100. At large voltages (U > 60 V), the
nonmonotonicity in the potential disappears, meaning vanishing of the opposing
domains, and the entire applied voltage is concentrated at the cathode, ap-
parently in the Sb-SbSI contact gap.

When the external field is turned on in the direction of the spontaneous
polarization, there is naturally no nonmonotonicity in the potential, and con-
sequently no opposing domains are produced (Fig. le). Just as in the preceding
case, however, there is the characteristic redistribution of the potential from
‘the anode towards the cathode.
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The observed singularities of the dis-
tribution of the potential are reflected in
the current-voltage characteristics (CVC)
(Fig. 2): in the initial sections of the CVC
there is observed the current saturation char-
acteristic of the barrier contact [3]; the
vanlshing of the depleted layer at large
voltages 1s accompanled by a transition to
a quadratic CVC, and when the field is con-
centrated on the cathode the CVC becomes more
gently sloping.

We note in conclusion that all the po-
tential distributions observed previously in
SbSI by the probe method [3, 4] are con-
tained, as particular cases, among the curves
given above.

The authors are grateful to V.A. Lakho-
vitskaya for the SbSI single crystals.
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Fig. 2. Current-voltage char-
acteristic of single-crystal
SbSI: I - amperes, U - volts.
The measurement conditions
correspond to Fig. 1b.
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Although the results of investigations of coherent mlcrowave radlation in

InSb [1, 2] have not yet made it possible to e

stablish the concrete mechanism

whereby thils radiation is excited, they do show that this mechanism 1s based

apparently on an electron-hole plasma instabill
with the singularities of the energy spectrum
action with the crystal-lattice vibrations. I
that analogous phenomena can be observed also
in which moderate electric fields can produce
high mobility and not too high a carrier densi
particular, the solid solution Cd Hgl XTe, whi

and at x > 0.15 is a semiconductor whose band
structure of InSb, and the mobility of the ele
5 x 10% em?/sec.
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ity that is not connected directly
of the carriers and their inter-

t was therefore natural to assume

in other semiconducting materials,
a non-equilibrium plasma with

ty. Such materials include, in

ch at x < 0.15 is a semimetal,

structure is similar to the band
etrons at T = 77°K reaches 10" -





