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The critical charge Zc is defined as that value of the nuclear charge at

which the energy of the ground level of the electron reaches the limit of the
lower continuum € = =1 (i = ¢ = me =1). At Z > Z the - Coulomb field of the

bare nucleus?!) produces two electron-positron pairs, the electrons of which
settle on the 1S level, and the posltrons go off to infinity through the Cou-
lomb barrier (a detailed discussion of the properties of the stable system pro-
duced - the supercritical atom - produced after the poslitron emission can be
found in [1]). According to calculations [2], Zc = 170 for the isolated

nucleus. Therefore, in spite of the latest progress in searches for superheavy
elements [3, 4], the possibility of the existence of nuclei with Z > Z appears
at present to be purely hypothetlcal.

Apparently a more realistic method of verifying the theory of supercriti-
cal atoms [1, 5] is to observe spontaneous quasistatic production of positrons
upon collision of heavy nuclel, say two bare uranium nuclei. The idea of such
an experiment is that when two nuclei come close together to a distance R <
ﬁ/mec = 1 the electron is acted upon by a field analogous to the Coulomb field

of a nucleus with double the charge 2A. Therefore, for example, in the limit-
ing case R = 0 (coalescence of the nuclei) the critical charge ZC(R) is de-

creased by one-half, ZC(O) = (1/2)Zc(w) = 85. For quantitative predictions it
is necessary to calculate the dependence of ZC on the distance between the

nuclei R. In view of the large mass of the nuclei, they can be regarded as be-
ing at rest (all the more since the probabllity of positron production increases
strongly with decreasing R, and at the instant of closest approach of the nuclei
it vanishes). As shown 1n [6], to solve this problem one can use a variational
method. We present below preliminary results of such a calculation.

The motion of the levels with increasing Z, the dependence of ZC on the
radius of the nucleus, and other characteristic features of the relativistic

1)I.e., of a nucleus with all its electrons removed. Incidentally, for
the production of positrons at Z > Zc all that is necessary is that the K shell

be unfilled (the remaining shells of the atom may remain filled). In principle,
such a situation arises after the Auger effect in m- or u-mesic atoms.
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Fig. 1 Fig. 2
Fig. 1. Effective potential in Eq. (3). Curves 1 - 3 correspond to
a = 0.67 (the uranium nucleus) and R = 1, 0.75, and 0.5 (in units of
ﬁ/mec). The abscissas represent the quantity y = 2ax/R.

Fig. 2. Decrease of critical charge ZC when the nuclei come closer

together. Curve 1 - results of numerical calculation, curve 2 -~ cal-
culation from Eq. (7).

Coulomb problem are the same for both spinor and scalar particles [2, 5]. This
allows us to start with the case of spin s = 0 (the Klein-Gordon equation with
vector coupling), which is simpler from the computational point of view. For
simplicity, we consider the symmetrical problem of two centers: Z; = Z, = Z.

In the spheroildal coordinates & = (r; + r2)/R and n = (r; - r2)/R we have the
equation [6]:

d dy P
2 fz-l)——]=2a§(R—aln £+ )w . (1)
dé d& £-1

Here o = Z/137 (Z is the charge of each of the nuclei), and R is the distance
between them (in units h/mec = 1). The critical charge Z = Zc corresponds to

the point o = a_  at which Eq. (1) first has a solution that decreases at in-
finity: ¢

b~ E-4exp(- yBaRE), £ = —2’;— . (2)

The change of variable £ = coth x recasts (1) in the form that coincides
with the Schrodinger equation for a level with zero binding energy:

Y- Wx)y =0,
(3)

chx

Vix) = a (R-2ax); 0<x< o

sh3x

(the form of the effective potential U(x) is shown in Fig. 1). This equation
was solved numerically; the results are shown in Fig. 2.
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We put

ZMR FR) . (4)

Z (=)
The function f(R) shows the extent to which the critical charge is decreased

when the nuclei are brought together to a distance R (it is obvious that f(«) =
1 and £(0) = 1/2).

We note that Eq. (1) was obtained in [6] by a variational method (for a
class of functions that depend on £ but not on n, corresponding to averaging the
potential over the variable n). Its solution (curve 1) therefore yields the
upper 1limit for f(R). To verify the accuracy of this approximation, we obtained
in analytic form the asymptote for f{(R) as R + 0. The wave function near the
nuclel is

Y€ )~ (- H%2, o= 1-y]-4a? (5)

(see [6]). On the other hand, in the region r;, rs >> R the nuclei can be re-
garded as a unit, which yields (at € = -1)

U = r=Y2K, (VBar)~r=Y2sin(gA - gln£) (6)

?

where v = 2g, A = -(1ln oR + 2y), and vy = 0.577 is Euler's constant.

Expressions (5) and (6) join together in the region R << r << 1; this leads
to the formula

0.315 1 1 - V3 - 4g?

R= —=—exp{ - —arc ctg(———-—*——~
a, g 2g (7)
(9= 2val - 1/16 , a_ = Z_/137

which is asymptotically exact at R + 0. Comparison of curves 1 and 2 on Fig. 2
shows that when R ¢ 0.1 the error of the obtained solution is small.

Thus, the function f(R) from (4) increase§ rapidly in the region of small
R and at R > 0.3 it is already close to unity2 . Therefore for a noticeable de-
crease of Zc the colliding nuclei should be brought together to a distance

R~ 0.1 which is small compared with the Compton wavelength of the electron.

This conclusion remains in force also for particles with spin 1/2 (elec-
trons). We present here only the analog of formula (7)

(8)

_ 0.16 ] \,”l—az . e —
R exp-—;arccrg<—'— °),g:\/4a:—l_

. g

A detailed derivation of these formulas, and also the formulation of the varia-
tional principle for the critical charge ZC in the case of particles with spin

1/2 will be published separately.

2)This agrees also with the form of f(R) as R » «: £(R) = 1 - BR™*, where
the coefficient 8 has a small numerical value (B ~ 10~2% - 107%).
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An axially-symmetrical body rotating inside a resonator cavity 1s capable
of amplifying definite oscillation modes inside the resonator, transferring the
rotation energy to these osclllations.

The frequency of the amplified oscillations 1is not an integer multiple of
the angular velocity of the body, and the instantaneous state of the resonator
does not depend on the time, so that the phenomenon in question differs from
the parametric resonator.

In scattering of a plane wave lincident on the rotating body, it is advis-
able to expand the wave into spherical (or cylindrical) waves with different
values of momentum projection on the rotation axis. In the scattering, the
waves with (sufficiently large) momentum parallel to the rotation vector become
amplified, and all others become attenuated. In the presence of an external
reflector with small losses (resonator), the amplification following single
scattering may turn into generation. The linear velocity on the surface of the
rotating body obviously is smaller than the speed of light, v = Bci B < 1. The
amplified waves have an angular dependence exp(in ¢), where n > B~°. It follows
therefore that the radius of the body is smaller than n wavelengths by at least
a factor of B; this means that the body 1s inside the gzone in which the wave

amplitude decreases more rapidly than (r/k)n. Therefore at small 8 the gain is
exponentially small, like exp(B") or even weaker.

The foregoing pertains to a body made of a material that absorbs waves
when at rest; the conditions for amplification and generation are obtalned after
transforming the equations to the moving system. A similar situation can ap-
parently arise also when considering a rotating body in the state of gravita-
tional relativistic collapse.

The metric near such a body is described by the well-known Kerr solution.

The gravitational capture of the particles and the waves by the so-called
trapplng surface replaces absorption; the trapping surface ("the horizon of
events") is located inside the surface goo = 0. Finally, in a quantum analysis
of the wave field one should expect spontaneous radiation of energy and momen-
tum by the rotating bodg. The effect, however, 1s negliglbly small, less than
fw*/c? for power and Aw®/c® for the decelerating moment of the force (for a
rest mass m = 0, in addition, we have omitted the dimensionless function B).
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