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The rapid decrease of the time T of intervalley scattering with ilncreasing
electron energy in multivalley semiconductors leads to a definite region of
heating fields and to the existence of not one but several stable distributions
of the electrons among the valleys, corresponding to different values of the
transverse fields (the multiply-valued Sasaki effect [1 - 4]). The presence of
several stable solutions of the spatially-homogeneous problem can lead to the
existence in real samples of a domain structure whereby the sample breaks up
into regions in each of which there is realized one of the stable distributions.
Such a structure should be determined by the configuration of the sample and by
the boundary conditions on its surface. In samples that are homogeneous in the
current direction, the boundaries between the domains should be parallel to the
current lines (in the absence of a negative differential resistance of N-type).

We shall show below that in the simplest two-valley case, which can be
realized in anisotropically-deformed n-Si and n-Ge (in the latter with insig-
nificant modification), only single- and two-domain structures are stable for
samples in the form of plates, and the multidomain solutions are unstable.

We consider a symmetrical direction of the current in a sample having the
form of a plate -d@ < y < d (Fig. 1), with the field Ex’ assumed given, chosen

such that in the homogeneous case there exist only two stable values of the
transverse field Ey, namely Et > 0 and E- = -Et < 0. 1In the field region under

consideration, the spatial distributions of the 1- and 2-electrons (u(l) 0,
u(z) = —u(l) > 0) is determined by two characteristic lengths, viz. the
stretched 1ength LE ~ uTE+ and the compressed length QE ~ e/eE , where € is the

average electron energy. LE >> lE if the conditions for the independence of
the energy balance of the valleys (assumed in [4] in the analysis of the

spatially-homogeneous solutions) are satisfled. Therefore, the field Ey ex-

periences abrupt changes in small intervals, called domain walls, and varies
smoothly in the remaining part of the semiconductor, i.e., in the domains. In
the latter we can neglect the diffusion components of the transverse carrier
fluxes, as well as all other components of these fluxes connected with the
gradients of the distribution-function parameters, and only their field compo-

nents need be taken into account in the fields E and E Then the continuity
equation for the difference flux j(l) - 3(2) (under the
XKe condition that i = e(J§1) + Jéz) = 0) takes the form
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We note that ¥(z) is an even function of ¢; for u inde- fe
pendent of the heating power, when du1 ,2/dt = 0 and x = 0, W .
we have ¥(z) = (u1 + u2)/(Tt1' + 13'). ’The function L(Z) ¢

is odd, and the equation g = L(Z) coincides with Eq. (8")
of [4], which determines the stationary homogeneous solu- = H . -y
tions. At the considered values of EX this equation has E}—

three solutions: 7 = 0 (unstable) and c(i) = Ei/aEX. In-

asmuch as dy/dgz ~ © as [ =+ ¢ and as ¢ - ¢g\l~/, Eq. (1)
has solutions of three types, and we shall accordingly
consider three types of domains:
1
1) s* domains, in which 13 ¢> (M y y -y(l) « ~ [F(Od S (2)
¢
2) 8™ domains, in which _ 1g ¢« D uy-yl=1 -5 FIOd¢; (3)

-1

4 4
3) M domains, in which {™?¥ {> P uy -y(0) « [F({)dL ()

The M-dom 135 can be subdivided into parts: c(+) >r >0 (M+ domains) and
0>tr>¢ (M~ domains), separated by a broad domain wall (the dimensions of
which is of the order of the stretched rather than the compressed length).

The z(y) dependence in a sample with specified boundary conditions consists
of domain sections given by formulas (2), (3), and (4), volume domain walls
separating the domains, and surface domain walls that match the domains to the
boundary conditions. In the considered case of symmetrical direction of the
current in the sample, the following condition should be satlsfied on the
volume domain wall

ly, =)= ={ly,+ O, (5)

where Ve is the coordinate of the "center" of the wall. According to this con-

dition there can coexist in one sample either only 3~ and st domalns, or only
M~ and M* domains, while structures including both S* and M* domains are for-
bidden.

multldomaln structure consisting of S* domains should include both S—s?
wallsl) and 8¥S~ walls. It is easy to note that the latter, unlike the former,
are unstable against small displacements from their equilibrium position satis-
fying the condition (5). Violation of condition (5) when %he wall 1s displaced
leads to the appearance of flux differences J (y + 0) = J (y_ - 0) and

J(Z)(y + 0) - 352)(y - 0), which strive to restore the satlsfaction of con-

dltlon (5) in the case of an 878t wall and to increase the flux difference in
the case of an S wall. Thus, the stationary solutions with S*s- walls (if
they exist) are unstable, and consequently a multidomain structure of S%

1)The S-St wall separates an S~ domain at y < Vo from an St domain at
y >y,
c
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domains 1is impossible. It is similarly possible to demonstrate the instability
of an M~MY wall (whereas an MYM~ wall is stable if stationary solutions with
such a wall exist).

From the instability of the M~M* and $*S- walls it follows that only
six simplest domain-structure types are posslible in plates: four single-domain
structures (8-, S+, M™, and Mt structures with domain walls only near the sur~
face) and two two-domain structu¥es, S-St and M*M~. The 5-S* structure contains
a thin domain wall. As to the M M~ structure, it may be also without such a
wall, 1l.e., it can represent a continuous M domain (with a broad domain wall).

Let us consider the case when there are no surface scattering mechanisms
whatever on either of the surfaces y = #d (this occurs, for example, in the
case of strong d?gletion of carriers from the surfaces). It then follows from
the conditions jy »2)(+d) = 0 that z2(#d) = 1, and a two-domain S-S* structure

is realized in the sample with a domain wall in the center of the plate (Fig.
2a). In this structure the transverse Sasaki emf is exactly equal to zero,
since the emf's in the different domains only cancel each other. It should be
noted, however, that in thick samples (4 >> LE) the position of the domain wall

in the middle of the plate is practically unrealizable, since very small devia-
tions of the current direction from exact symmetry causes a strong displacement
of the wall from the central plane towards one of the surfaces of the sample.
This realizes a quasli-single-domain s=st structure (Fig. 2b), in which one of
the domains has a thickness on the order of several lengths LE’ whereas the
other encompasses practically the entire sample.

The domain structure considered here differs from the domain structure in-
vestigated in [5]. 1In the latter, for the two-valley case, a narrow domain
wall occurs only for 4 < LE’ whereas here it can exist in arbitrarily thick
samples.
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