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It is well known that a beam of oscillators made up of plasma particles rotating around
a magnetic field is unstable against excitation of oscillations if the distribution funetion
does not depend on the phase in velocity space (in the case when the oscillators are not in

phase).

It is of interest to investigate the stability of a system of phased oscillators,
i.e., oscillators with fixed phase in velocity space.

Such a system can be obtained, for

example, when a transverse electromagnetic wave propagates in a plasma along a magnetic field.
In this case the problem of stability of a system of phased oscillators is identical with the
problem of stability of a wave propagating in a plasma along the magnetic field.

We shall consider this problem in the hydrodynamic approximation.

The initial system

of equations consists of the hydrodynamic equations for the plasma particles and Maxwell's

equations:

We seek solutions of this
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system in the form

v, = a(t) exp[-io + 1p(t)],

iE_ = 16(t) exp[-i® + iy(t)],
v (2)
iH, = iH(t) exp[-io + ik(t)],

vz(t), E, = Ez(t), H = H, = const, & = kz - wt.
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of the velocities and of the fields are then constant and related by
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and the wave number k is determined by the dispersion equation

e@=@+@a;ww (3b)

Iet us consider small perturbation of the stationary state, deseribed by formulas (3)

8(t) = 8y + 82(t), It) =¥, +H(s), a(t) =8, + ay(t),

K(8) = kg +ka(8),  o(t) = gy + 0a(t),  ¥(E) = ¥, + Va(t),

and obtain the following equation for A, assuming that all the perturbations are proportional

to exp(rt): ~
Mo+ 22w, A+ 0P = + ba? + A%}

+{ha?wHAu2+a§u§p2+hmHma?P+ha>2A2+m‘*p Z—i‘]:o,

where Q2
0 -1
A=a -, 0, = euo/mc, pe = = (1+ w?/\2)

A qualitative investigation of this equation shows that it always has solutions corres-
ponting to instability when the field amplitude is sufficiently large. For & quantitative
estimate of the growth increments and of the instability conditions, let us consider the
simplest limiting cases.

1. Low plasma density (strong magnetic fields). This case comes closest to the problem
of stability of & particle accelerated by an external field.

Two limiting cases are then possibles

a) @, << la] «< @y

In this case
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Thus, the instability can exist only in the region of fast waves (w > wH), and with in-
creasing wave amplitude both the width of the instability region (in terms of freguency) and
the instability increment increase. It can be shown that the results of case (a) can be ob-
tained from an analysis of the problem of the stability of motion of one particle in an ex~
ternal field.

According to (b) the instability increment decreases with increasing plasma density in
this region.
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2. High plasma density (weak magnetic fields). When
~ K2R [uR ~ ~ 1/2
mﬂ/wp B /m; Qg/a!; (a)/cbp) <«< 1 (6)

the solution of (4) is

o k2c2+me
N =-w§[l+8:t ,/a?-mﬁggfaﬁp}; ==k,

b

The instability has therefore a threshold character in this case (A > 0), too 1).

We can analyze similarly the case of finite wavelength for the perturbation of the
longitudinal field and of the velocity. In the latter case the instability conditions and
the increments obtained above are altered. In addition, the order of Eq. (4) increases, and
this can lead to new instabilities, similar, for example, to those considered in 1 .

It must be noted that the problem of stability of curvilinear beams of charged particles,
vhich likewise constitute beams of excited oseillators, was first considered in [2]. Unlike
the conditions considered there, in our problem the amplitude of the oscillator is uniquely
determined by the wave amplitude. Therefore the instability remains in our case even when
the plasme density is zero (as noted above, this corresponds to the instability of a particle
moving in an external field), whereas in fal the increment vanishes at zero beam density.
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1) In this case the instability has a decay character.
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It was established in the experiments of Long (1] and Keyes [2] that the electric resis-
tivity p and the Hall coefficient R of indium antimonide increase exponentially with the
pressure P in the intrinsic-conductivity region. This result was attributed to the linear
increase of the forbidden band eg of the crystal with increasing pressure (up to 12,000 kg/ o),
the proportionality coefficient being 1.5 x 105 eV-cx®/kg. A consequence of this increase
of eg is the exponential Iincrease of the concentration of the intrinsic carriers. For a
numerical determination of the proportionality coefficient in the dependence of eg on P from
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