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It is difficult to apply the ordinary hydrodynamic approach [1] to the motion of vortex
filaments in superconductors of type II, owing to the presence of the lattice. 1In the state
of local equilibrium, the condensate is characterized by a superconducting velocity ;s and an
electron density N. However, in view of the Coulomb interaction, the relaxation rate of N is

so large that the only "hydrodynamic" quantity is ;s' It is easy to obtain for ;s the equation

};s = e/m (_ﬁ - Vo),

but this is a trivial consequence of Maxwell's equations, since by definition
curl ;s + (¢/mH = 0

(;s = 1/2 m(Vx - EeX), x is the phase of the ordering parameter, A = |afexp(ix), % = curl K,
and B =c¢ = 1).

In view of the field character of the vortex, being a line of singularities of Vg
~ 1/2mr [21. for the solution of the problem it is in fact sufficient to find directly the
response of the superconducting system to an external field, i.e., the current 3 = S(X} as a
functional of A. In the case of "dirty" alloys (TTC << 1), for physically reasonable frequen-

cies wr << 1, this can be done by directly expanding 3 in terms of the small parameter wt:
T * A el
3=y +0, 3, =0lv]E
where 35{38} is the equilibrium superconducting current in the specified magnetic field Z.
The phase x in ;S is determined by the additional equation div_5S = 0, which follows from the

imaginary part of the equilibrium equation for the ordering parameter. The kernel of the con-

ductivity operator 3[38} can be shown to have the form

(-1)8/aw (355 31, o o

where the correlator (ji, jk) can also be calculated from the equilibrium state in the speci-
fied external field . The relations presented constitute, together with Maxwell's equations

and the continuity equation, a complete system that yields the vortex equation of motion.

76



To derive these equations, it is convenient to start from the general principles of non-
equilibrium thermodynamics (see, for example, [3]). The work performed on the system by the
external current Jext PET unit time

-

W=-fav3 E
= = Jex.t 2
can be expressed in terms of the response of the system
o Hz - > - -
W= (3/3t) [ avg+ [ av [3gE + J -EL,
. > - i
from which it follows, by virtue of E = (m/e)vs + Vip and div js{vs} = 0, that

-

= (3/3t) Javi g; +FE )] + fav 63 )52 <g§}s- Jav F-23) (1)

According to this equation, the maximum work of the reversible transition into the nonequilib-
rium state is equal to
He - AS
wmin‘fdv[B?*-F[vs]]_-T (2)

(AS is the deviation of the entropy from the equilibrium value), whereas the loss due to the
irreversible processes is represented in the form TAS = [dv a[;S}E2. Caleulation of the latter

integral for a moving vortex yields

75 = [anvg, (3)

where the integration is along a vortex line and Y. is the velocity of the filament element.

L

Let us express the quantity W . (2) in terms of the parameters of a filament situated
in an external field. For extremely hard superconductors (k >> 1) the field of the filament
is small (“\/k in dimensionless variables [2]) and we can expand (2) in powers of this small
quantity. Retaining only the terms containing the filament to second order of smallness, we
obtain - o

_ HSH , m = > (8H)2 . m = =
Yinin = fav [ = e Jsavs] +Jav [ Bx T Ze 63ssvs]’

where Sﬁ, 835, and S;S are quantities describing the vortex. Integration of this equation by
parts with the aid of the formula BH = (-m/e) curl (S;S) and Maxwell's equations leads, owing

to the presence of the singularity in S;S, to the following result:
W = fdlT+ e Jat (%)
min - Le C

(eo = BHm/Be is the self energy of the vortex per unit length and SHm is the field at the
center of the vortex). The second term obviously represents the "elastic" energy of the
filament.

From the equations for the relaxation of the parameters of the partial equilibrium of
the system (i.e., the coordinates ;(m, t) of the filament)

&3
ik 8xi

. ) ,
Xy = Voo Jar'y

2)

we get from (2), (3), and the Onsager principle of the symmetry of 2
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Therefore, varying (4) with respect to the filament element, we obtain ultimately
e d

o= (g x 81 + ¢ ¢ (5)

where ET = SS is the external current, ¢. = n/e the magnetic flux of the vortex, n the prin-

cipal normal to the vortex line, and R tge radius of curvature of the filament. We note that
in accord with the obtained expression, the effective mass of the filament naturally vanishes,
in view of the approximation wt << 1. Owing to the nonlinearity of the functionals Es{;s}
and S[GS}, the coefficients 1 and €y are generally speaking dependent on the external current.
Simple estimates show that the limits of applicability of (5) are given by the inequalities
Jp << J,p and R >> A& (N = depth of penetration of the field).
-
Upon application of a constant external current jT on the mixed state in the supercon-

ductor, the average electric field intensity produced by the moving vortices is equal to

Eav = - ;L x %, from which it follows, taking (5) into account, that Eav = bET. For the
resistivity we have o B

..o _ 1B

T T en

and near Tc’ for fields that are not too strong, p = pnB/Hc2 [1].

The author considers it his pleasant duty to thank J. Bardeen for a stimulating influ-
ence on this work, and to I. M. Lifshitz for calling attention to the work of A. M. Kose-
vich [4] on the theory of dislocation motion, which is formally close to the problem con-

sidered here.
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1) In the local approximation these calculations were carried out by the author under

the direction of J. Bardeen. In particular, the value obtained for the viscosity coefficient
of the moving vortex near Tc was 1 = nancg/e, where oy is the conductivity of the normal metal.

2) ~ e, .V
k ikt 1L’
to a force acting along the filament. The remaining expressions do not agree with the energy

The only antisymmetrical expression that need be considered, 7i leads

conservation law [1].





