η = -1. Investigating the forward scattering of B and recognizing that B is produced in the pure state, we can confirm or reject j = 3, η = 1. If not all $A_L \neq 0$, then we can investigate the angular distribution of one of the particles produced during the decay of B. All the statements remain valid in this case, too, provided we take \vec{n} to mean a unit vector in the direction of this momentum. The method presented for determining j and η is usable also in the case of decay of B into a vector and pseudoscalar meson (in this case \vec{n} is a unit vector in the direction of the momentum of the second vector). We take this opportunity to note that the formulas obtained in [5] can be used to determine not only the parity but also the spin of an isobar. We note that the use of a spinless target to determine the spin and parity of a boson in the case of two-particle decay was proposed earlier by Bilen'kii and Ryndin [7]. The author is sincerely grateful to I. I. Levintov and Yu. A. Simonov for valuable discussions. - [1] M. Ademollo, R. Gatto, and G. Preparata, Phys. Rev. 139B, 1608 (1965). - [2] S. M. Bilen'kii, L. I. Lapidus, and R. M. Ryndin, UFN <u>84</u>, 243 (1964), Soviet Phys. Uspekhi 7, 721 (1965). - [3] G. Shapiro, Phys. Rev. 134B, 1393 (1964). - [4] S. M. Bilenky and R. M. Ryndin, Phys. Lett. <u>18</u>, 346 (1965). - [5] M. S. Dubovikov, JETP Letters 3, 8 (1966), transl. p. 4. - [6] M. S. Dubovikov, Yadernaya fizika, in press - [7] S. M. Bilenky and R. M. Ryndin, Phys. Lett. 13, 159 (1964). ## CHECK OF C-INVARIANCE IN PHOTOPRODUCTION OF STRONGLY-INTERACTING PARTICLES M. P. Rekalo Physico-technical Institute, Ukrainian Academy of Sciences Submitted 27 December 1965 ZhETF Pis'ma 3, No. 4, 160-163, 15 February 1966 We discuss in this note the possibility of checking on the hypothesis concerning C-noninvariance of electromagnetic and strong interactions [1] in experiments with high-energy γ quanta and electrons. Many difficulties arising in the verification of C-invariance in different hadron decays can be circumvented in these experiments. 1. The decay $\pi^0 \to 3\gamma$ is due to C-noninvariant interactions. However, the large centrifugal barriers and the small interaction radii, together with the low energy release, greatly suppress this decay compared with $\pi^0 \to 2\gamma$, in spite of the smallness connected with the emission of the additional γ quantum. This difficulty can be circumvented in principle by investigating the process inverse to $\pi^0 \to 3\gamma$, viz., photoproduction in the Coulomb field of the nucleus of a π^0 meson and a γ quantum (analog of the Primakoff effect [2]). The process $\gamma + Z \to Z + \pi^0 + \gamma$ will have the appearance of the transformation of a high-energy photon in- to three γ quanta in the field of the nucleus. The competing process of pure electrodynamic production of 3γ is of higher order in $\alpha=1/137$. At γ energies hv=hc/R (R = interaction radius in the $\pi^0 \to 3\gamma$ decay) the centrifugal repulsion becomes insignificant. Analogous considerations hold also for the photoproduction of an η meson and a γ quantum in the Coulomb field of the nucleus. 2. Study of the electroproduction of $\pi^{0}(\eta)$ mesons at high energies also enables us to investigate the violation of C-invariance in electromagnetic interactions. As is well known [3], at high energies (hv \simeq 1 GeV) the photoproduction of π^+ mesons at small angles is determined essentially by a peripheral mechanism corresponding to π^+ -meson exchange. In π^0 photoproduction there is no such mechanism. However, in the electroproduction of π^{O} mesons a peripheral mechanism of η -meson exchange is possible. The differential cross section for this mechanism is of the form (in the c.m.s. of the entire reaction) $$d\sigma \approx \alpha \, \frac{f_{\eta}^{2}}{4\pi} \, f_{1}(h^{2}v^{2}) \, \frac{(-\Delta^{2})((hv)^{2} \, m_{\pi}^{2} - 4qr_{1}qr_{2}) |\vec{p}| d\Omega_{p} d^{3}\vec{r}_{2}}{(hv)^{4} \, (\Delta^{2} - m_{n}^{2})^{2} \, 8\pi^{3} \, W \, \epsilon_{2}[(\omega + E_{2})(\vec{q} \cdot \vec{p}_{2}/\vec{p}^{2})]} \,, \tag{1}$$ where f_{η} is the constant of the (ηNN) interaction, $f_{1}(h^{2}v^{2})$ the form factor of the $(\gamma\eta\pi)$ vertex, r_{1} and r_{2} the 4-momenta of the initial and final electrons, $hv = r_{2} - r_{1}$, q the 4-momentum of the π^{0} meson, ϵ_{2} , ϵ_{2} , ϵ_{2} , ϵ_{3} the energies of the final electron, the nucleon, and the π^{0} meson, ϵ_{4} the square of the 4-momentum transferred to the nucleon. Therefore, if we disregard the contribution of the vector mesons, the behavior of the cross sections for electroproduction of π^0 and π^+ mesons on protons at small angles relative to the momentum of the virtual γ quantum will differ from the behavior of the cross sections for the photoproduction of π^0 and π^+ when C-invariance is violated. To get rid of the contribution of the vector mesons, we can operate in the energy region where exchange of vector mesons is insignificant as a result of their appreciable mass, whereas exchange of pseudoscalar mesons plays an important role (this corresponds to a virtual-photon energy in the interval 400 - 800 MeV). Another possibility arises when linearly polarized γ quanta are used. Then in the case of pseudoscalar-meson exchange the π^0 mesons are produced predominantly in the polarization plane, and for vector-meson exchange there is preferred production of π^0 perpendicular to the polarization plane. Such an investigation is made easy by the fact that the virtual γ quanta have a considerable linear polarization. Everything stated above is valid also for the process $e^- + p \rightarrow e^- + p + \eta$, with the only advantage that the C-noninvariant peripheral exchange of the π^0 meson at γ -quantum energies up to 1 GeV should exceed the contribution of the vector mesons in the small-angle region. The validity of this statement can be checked in the process $e^- + d \rightarrow e^- + d + \eta$, where there should be no η mesons at small angles. 3. The decays $\omega \to \rho^{\circ} + \gamma$ and $\varphi \to \rho(\omega) + \gamma$ are of interest for explaining the isotopic structure of the C-invariance-violating electromagnetic current. The difficulty connected with the suppression of these decays by the low energy release can be circumvented by investigating the processes $$\gamma + p \rightarrow p + \rho^{O}$$, $\gamma + p \rightarrow p + \omega$, $\gamma + p \rightarrow p + \varphi$ in the angle and energy region where peripheral mechanisms corresponding to vector-meson exchange take place. Exchange of pseudoscalar mesons, which does not violate C-invariance, is a competing process. With the aid of linearly-polarized γ quanta it is possible to separate the mechanism of interest to us. 4. In conclusion let us consider the process $\gamma + p \rightarrow p + f^O$ at small angles of f^O production. If C-parity is not conserved, then peripheral mechanisms take place with $\pi^O(\eta)$ meson exchange. In this case the form of the cross section is (we retain the contribution of the π^O meson only) $$\frac{d\sigma}{d\Omega} = \frac{g^2}{4\pi} \frac{5}{2} \frac{m\Gamma(f \to \pi^0 \gamma)(-\Delta^2)}{W^2(1 - m_{\pi}^2/m^2)(\Delta^2 - m_{\pi}^2)^2} \left(\frac{\Delta^2/m^2 - 1}{m_{\pi}^2/m^2 - 1}\right)^4, \tag{2}$$ where g is the (πN) interaction constant, $\Gamma(f \to \pi^0 \gamma)$ the width of the decay $f \to \pi^0 + \gamma$, m the mass of the f meson, W the total energy, and Δ^2 the square of the momentum transfer. We note that a direct investigation of the decay $f \rightarrow \pi^{O} + \gamma$ is made difficult by the large width of the f meson, which decays as a result of the strong interactions. - [1] J. Prentki, Lecture given at Oxford Internat. Conf. on Elementary Particles, CERN Preprint 65/1358/5-TH, 604. - [2] A. Primakoff, Phys. Rev. 81, 899 (1951). - [3] M. Beneventano, R. Finzi, L. Mezzetti, L. Paoluzi, and S. Tazzari, Nuovo Cimento 28, 1464 (1963). CROSS SECTION FOR THE PRODUCTION OF CHARGED PIONS IN (n-p) COLLISIONS AT A NEUTRON EFFECTIVE ENERGY 585 keV S. G. Basiladze, P. F. Ermolov, and K. O. Oganesyan Joint Institute of Nuclear Research Submitted 2 January 1966 ZhETF Pis'ma 3, No. 4, 163-166, 15 February 1966 The cross section for the production of charged pions in the reactions $$n + p \rightarrow \pi^{+} + n + n,$$ $n + p \rightarrow \pi^{-} + p + p$ (1) plays an important role in the phenomenological analysis of pion production in nucleon-nucleon collisions. The cross sections of (1) were measured in [1,2] for 600 MeV neutrons. To obtain more accurate values, we have made new measurements with the aid of a scintillation telescope and a liquid-hydrogen target in the form of a Dewar of special construction. Figure 1 shows the diagram of the experiment. A neutron beam from the JINR synchrocyclotron was incident on the liquid-hydrogen target. The pions of both polarities produced