- P. Bykov for a valuable discussion.
- [1] V. P. Sheiko, Ukr. fiz. zh. 7, 430 (1962).
- [2] G. D. Bogomolov, Elektronika bol'shikh moshchnostei (High-power Electronics), Coll. 3, p. 154, Nauka, 1964.
- 1) A detailed article will be published in the sixth collection of "Elektronika bol'shikh moshchnostei" (High-power Electronics).

INVESTIGATION OF THE ELECTRONIC STATES OF ATOMS, MOLECULES, AND SOLIDS BY QUASIELASTIC KNOCK-ON OF AN ELECTRON BY A FAST ELECTRON (e, 2e)

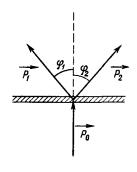
Yu. F. Smirnov and V. G. Neudachin Nuclear Physics Institute, Moscow State University Submitted 21 February 1966 ZhETF Pis'ma 3, No. 7, 298-301, 1 April 1966

Continuing earlier investigations [1,2] of the analogs of direct nuclear reactions in the atomic-molecular region, we wish to point out the great value of the quasielastic knock-on reaction (e, 2e). The difference from work on ionization [3] lies here in the fact that it is necessary to measure for coincidence the pulses from both final electrons (Fig. 1) at fixed emission angles (see [4] regarding the (p, 2p) reaction). We shall show with three examples (impulse approximation) that this makes it possible to obtain the Fourier transform of the wave function of the knock-on electron and its binding energy. In paragraphs 1 and 2 we shall assume that the electron energies are equal ($E_1 = E_2$) and that the angles φ_1 and φ_2 are also equal (complanar symmetrical case).

1. He molecule, final ion He in state log:

$$\frac{\mathrm{d}^2\sigma}{\mathrm{d}\Omega_1\mathrm{d}E_1} \sim \left[\frac{\mathrm{q}^2\mathrm{a}_0^2 + \tilde{\mathrm{m}}^2\mathrm{Z}_{\mathrm{eff}}^2}{\tilde{\mathrm{m}}^2\mathrm{a}_0^2}\right]^{-4} \left[\frac{\mathrm{x} + \mathrm{sinx}}{\mathrm{x}}\right] \left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega_1}\right)_{\mathrm{tree}} W_{\mathrm{n}} \tag{1}$$

The cross section for free e-e scattering $(d\sigma/d\Omega_1)_{\mbox{free}}$ is tremendous, $\simeq 10^{-21} \mbox{ cm}^2/\mbox{sr}$ at $E_0 \simeq 5$ keV $(\phi_1 = 45^\circ)$, so that the targets must be unusually thin (100-Å films or equivalent gas



jets). Further, $Z_{\text{eff}} \simeq 1.2$ (Heitler-London function), $x = qR/\hbar$, a_0 - Bohr radius, R - distance between nuclei in H_2 , $q = p_1 + p_2 - p_0$, and W_n - probability of production of H_2 in the n-th vibrational state. $W_n = 0.06$, 0.2, and 0.3 for n = 0, 1, and 2. In the general case the ratio of the heights of the maxima in the spectrum of the energies E_1 + E_2 determines the spectrum of the genealogical connection [5] between the ground state of the target and the different hole states of the final ion.

2. Free electrons in a metal (plane waves):

Fig. 1

$$\frac{d^2\sigma}{d\Omega_1 dE_1} \sim n \begin{pmatrix} p_x = p_y = 0, & p_z = p = 2p_{1Z} - p_0 \\ \varepsilon = 2E_1 - E_0 \end{pmatrix} E_1 \left(\frac{d\sigma}{d\Omega_1}\right)_{\text{free}}$$
 (2)

Here $n(\frac{p}{\epsilon}) = 2$ if one of the occupied states has a quasimomentum p and an energy ϵ , and n = 0 in all other cases. If p and ϵ are specified $(|p| \ll p_0)$, then the coincidences will be registered at $\phi = \pi/4$ - p/p_0 and $E_1 = (E_0 + \epsilon)/2$. The non-complanar asymmetrical case gives a connection between ϵ and p even for an arbitrary direction of p in the single crystal.

3. Strong coupling with the lattice (Bloch's sums):

$$\frac{d^{4}\sigma}{d\Omega_{1}d\Omega_{2}dE_{1}dE_{2}} \sim n \begin{pmatrix} \vec{p} = \vec{p}_{1} + \vec{p}_{2} + \vec{a}_{1} - \vec{p}_{0} \\ \epsilon = E_{1} + E_{2} - E_{0} \end{pmatrix} \delta_{p+k,a_{1}} |g_{at}(\vec{k} = \vec{p}_{0} - \vec{p}_{1} - \vec{p}_{2})|^{2} \sqrt{E_{1}E_{2}} (\frac{d\sigma}{d\Omega_{1}})_{free}$$
(5)

Here a_i is one of the reciprocal-lattice vectors, $g_{at}(\vec{k}) = \int [\exp(i\vec{k}\cdot\vec{r})\phi(\vec{r})d\vec{r}]$, and $\phi(\vec{r})$ is the wave function of the electron in the atom.

Thus, at energy $E_1 + E_2$ corresponding to the bottom of the band (p = 0), we have a series of pointlike spots corresponding to $\vec{k} = \vec{a}_1, \vec{a}_2, \ldots$ (Laue). On going away from the bottom of the band, each of the spots $\vec{k} = \vec{a}_1$ becomes (irregularly) spherical with angular radius $\approx p/p_0$.

The great difference between formulas (2) and (3) will probably make it possible to investigate the single plane-wave approximation in metals, molecular orbitals in molecular crystals, or localization of "ferromagnetic" d-electrons in metals of the Fe group and ferrites. All the occupied bands in metals, alloys, ionic crystals, etc. are admissible. The required accuracy in the measurement of E_0 , E_1 , and E_2 is $\simeq 0.1$ - 0.2 eV [6]. Allowance for the distortion of the wave and the departure from the mass shell, and the use of more realistic wave functions of the many-electron problem, will be discussed in a later detailed article.

The authors thank K. P. Belov, V. L. Bonch-Bruevich, S. V. Vonsovskii, Yu. P. Gaidukov, V. I. Gol'danskii, A. F. Tulinov, and S. V. Tyablikov for advice and stimulating discussions.

- [1] Z. Matthies and V. G. Neudachin, JETP 45, 131 (1963), Soviet Phys. JETP 18, 95 (1964).
- [2] M. Gmitro, Czechosl. Phys. J. 14, 817 (1964).
- [3] R. Axerib and S. Borowitz, Phys. Rev. <u>122</u>, 1177 (1961); B. B. Robinson, ibid. <u>140A</u>, 764 (1965).
- [4] M. Riou, Revs. Modern Phys. 37, 381 (1965).
- [5] V. V. Balashov and A. N. Boyarkina, J. Nucl. Phys. 38, 629 (1962).
- [6] H. Fellenzer, Z. Physik 165, 419 (1961); M. Horstmann and G. Meyer, ibid. 164, 21 (1961); L. B. Leder and L. Marton, Phys. Rev. 112, 341 (1958).