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1) We assume here that the specific heat of the monomer and of the polymer is C = 0.3

cal/g and neglect the change of specific heat with pressure.

2)

vapor reaction products is also smaller than the volume of the initial substances.

In the case of detonation of a fulminating mixture the specific volume of the water-
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The problem of determining the spectral density of the energy levels of an electron
moving in & random field was considered in several papers. Of particular interest is the in-
vestigation of the viecinity of the singular points in the spectral density. These questions
are the subject of the review of I. M. Lifshitz [1].

In this paper we consider a one-dimensional model, in which an exact solution can be ob-
tained. In addition to the fact that the exact solution serves as a touchstone for various
approximate approaches, the one-dimensional model has apparently a bearing on organic mole-
cules. We consider a model of identical (for simplicity) arbitrarily arranged potentials in
the form of 8 functions, and obtain for the characteristic function an integral equation
similar to that of Dyson [2]. The equation derived makes it possible to investigate the spec-
tral density for a broad class of arrangements of the scattering centers, from periodic to com-
pletely random. Exact solutions of several one-dimensional problems were also obtained ear-
lier in [3-6], where, however, only a definite distribution of the scattering centers was con-
sidered. We note also that the proposed approach is connected with the Green's functions and
differs completely by this token from the approach common to the papers [3-6]. This circum-
stance allows us to apply our method also to the solution of other one-dimensional problems.

The equation for the usually defined Green's function of an individual particle, de-

scribing its motion in the field of a system of scattering centers in the form of ® functionms,
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can be formally solved. The solution is written in the form

olx, x) = ¢ (x, x') - UZG(O)(X, x ) (1 + 60N 1 600 | xry. (1)
n nm m
m;n
Here G(O)(x, x') is the Green's function of the free particle, equal to (im/k) exp(ik|x - x'|)
(where k =./2mE and we put i = 1), the potential is chosen in the form U%&(x - xn), X, is the
position of the n-th scattering center, and @(O) is a matrix of rank N (N is the number of cen-
ters) with elements G(O) = G(O)(xm, Xn). Knowing the Green's function, we cobtain in the usual

mn
manner [7] the level density, for which we get the expression

o(E) = % - % Im%E— 1n Det(l + Ué(o)). (2)

In deriving relation (2) we used the property of the integral of a product of two Green's
functions and simple matrix relations. The expression obtained for the level density must be
averaged over the positions of the scattering centers. To this end we note that the deter-

minant in (2) satisfies the recurrence relation
D, = A(rn)Dpy - Na(ry)Dn-2, (3)

where Dn is the determinant obtained from the initial one by crossing out the first n rows and

columns, T is the distance between centers n and n + 1,
Mlrg) =1+ % + (1 - %) exp(2ikrn), ra(ry) = exp(Eikrn), and kg = mU.

The existence of relation (3) follows from the essentially one-dimensional form of the Green's

function, satisfying the identity

.o G(O)(xm_l, x ).

G(O)(xn, xm) = G(O)(xn, x -

n+l)

For the ratio Dn/Dn—l =V we get from (3)

V= Malry) - 1‘*\2,—(1"-&) . (%)
n-1

Let now the distances between the scattering centers have an independent distribution with a
function f(rn) each. Going over now from the variable T to the variables Vn we readily ob-

tain an equation for the distribution function F(V) for the quantities Ve

20 = o2 522 (5)
0

(the simplest way to derive (5) is to average &(V - Vn) first in terms of the variables v, and
then in terns of the variables rn). The function F(V) depends on k as a parameter. It is ob-

vious that

(lnDO) =Zln v, = IE/F(V) 1n Vav. (6)
n

Substituting (6) in (2) we obtain
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o(E) = - . %5 Im-%i F(V) 1n vav. 1)

The problem thus reduces to finding the solution of the integral equation (5), a detailed in-
vestigation of which will be reported elsewhere. We dwell here only on one interesting limit-
ing case, when the following conditions are satisfied: k << kO’ kOa >> 1 (a is the average
distance between centers), but ka ~ 1 and even ka >> 1 are also possible. When koa >> 1 we
have for v the asymptotic expression v, = (iko/k)(l - exp[2ikrn]). We note that since v, de-
pends only on one distance r , we can take into account in our approximation any correlation
between the different r . Denoting now by f(rn) the total distribution function f(rjy, ..., rN)
over the distances between centers, averaged over all rm'(m # n), we obtain after elementary

mathematical operations the following final formula for the energy-level densities
o

o(8) = o= F) w5, (8)
n=0

This expression can be summed for the particular form f(r) = (:L/a)e“r/a (Poisson distribution)

p(E) = ai = %% exp (-n/ak)[1 - exp(-n/ak)]™%. (9)

The latter formula corresponds to independent quantization in the potential wells between cen-
ters, with subsequent averaging over the distance between centers. The possibility of such an
independent quantization is connected with the smallness of the subbarrier passage (~ka/k0a)
and is valid, since koa >> 1, also for large ka. We note the following features of formula
(9): First, when ka << 1 we have p =~ n(ak) ®(dk/dE)exp(-n/ak), i.e., the level density is ex-
ponentially small, owing to the exponentially small probability of a large distance, ~n/k, be-
tween centers, necessary for excitation of a level with low energy. Second, when ka >> 1 the
level density p(E) goes over into the expression for the level density of the free particle,
Py = n/ k. Third, the level density has an extremum when ka ~ 1, and at other than Poisson
distributions there are apparently not one but several extrema, the number of which increases

as the system approaches periodicity.
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