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In interactions between excitons and photons in three-dimensional crystals, the wave
vector is fully conserved, accurate to the integer reciprocal-lattice vector. Therefore allow-
ance for retarded interaction in such crystals leads to new states - normal electromagnetic
waves, which are undamped if anharmonicity is not taken into account (see, e.g. [1], Sec. 8,
and also {2-4]). 1In this case, naturally, the dielectric tensor remains real [5].

Unlike three-dimensional crystals, allowance for retarded interaction in one- and two-
dimensional periodic structures leads to several singularities in the exciton spectra. The
reason is that when excitons and photons interact in one- and two-dimensional crystals the
quantities conserved, accurate to the integer reciprocal-lattice vector, are either only one
or only two projections of the wave vector.

Let us consider this question in greater detail l). Using a Coulomb gauge for the vector
potential and following [4], we represent the Hamiltonian of the system excitons + transverse-

photon field in the form

H= HCoul * Hi * Hlnt’ (1)
where
~ = A+ - -
Hooul —ZE“(R)B“(R)BH(I{) (2)
ku

is the Hamiltonian of the excitons, corresponding to full account of the Coulomb interaction,

R =) mee £5@8,@ 3)
aJ

is the Hamiltonian of the transverse-photon field, and

o - ) =A@ ()
n
is the main term in the exciton-photon interaction operator. In (2) and (3) E (k) is the
energy of an exciton with wave vector in band y, B (k), (k) and & (a), éj(q) are the Bose
creation and annihilation amplitudes of the exc1tons and photons, respectively, a is the wave
vector of the photon, and j = 1, 2 its polarizations. In (4) ﬁ(ﬁ) is the vector-potential

operator and T(ﬁ) the electron-momentum operator of the molecule . If the photon wave vector
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and the component 51 is perpen-

dicular to the exciton wave vectors, then the operator (4) can be reduced in the second-
quantization representation (see also [4]) to the form (we disregard here inessential processes
such as umklapp):

Frng = )0y (D8,(D 3,-3) - 3@+ ey )
nd
7, @ = 1(e/ved® B (3) (T (DF,E)), (58)

where N is the number of molecules in the cyclicity volume of the crystal (N = Ny and N = N;N»
for one-dimensional and planar crystals, respectively), the ecyclicity volume for photons,
V= N1N2N3d , d is the lattice constant, 1 (q) is the unit vector of the photon polarization
(53, and P (4,) is the matrix element of the dipole moment operator of the transition from
the ground staLe to the exciton state (uq,). Relation (5a2) is valid only if q < 1/d. If

q > 1/4, then Tju(a) - O (see [4]). We therefore confine ourselves below in the summation to
the region q < 9y = 1/d. The operator (5) leads to processes in which the exciton is con-
verted into photons and vice versa, with conservation of the wave-vector component E . If we
denote by a solid line the Green's function of the photon, then, obviously the perturbation-

theory series for the exciton Green's funetion is
kiw - ko + k,w k + Qa0 k,» ... = k,w + K, K + qi,0 K, (6)

Here the dots denote the vertex part in the zeroth approximation. Solving this equation with

respect to the exciton group function, we find that its poles are given by the equation
T = - 12 -1
- E(R) =) brea B (8| T, (D[ (e - r2e2q) (@)
M - M Ju
Jay

For a linear chain this equation takes the form

. . o | az BeosPo + gsin26
20 - @ = 2@y L T ®)
0]
where
R 8n2ES(E) - 2 e? - H2cPK®
AR) = ———|P (B)] , a= — —. (9)
d_ﬁsca [ h202

Since A is proportional to IE(E)Iz, it is clear that the role of the retardation can be sig-
nificant only for sufficiently intense dipole transitions. If, for example, Eu = 5 eV,
IP“I ~ e x 1078 cm, and 4 = 5 x 1078 cm, then A = 1 (eV)2.
The solutions of (8) are, generally speaking, complex: ¢ = €' + ie’. 1In the spectral
region where |e¢"| < €' we have
1 =é73 1
Z - & Z - 8

+ ind(z - a).

Neglecting the attenuation in the first approximation and taking the integral in (8) in
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the sense of the principal value, we obtain for k << 4 and lal << 9 the following equation

-
for €' (k) : . oo
Hc"qg

# Lo 3c05%0 4o o2 mlgl} (10)

> ' _ é
0 - (€ = {0+ corta] oo | 222 :

v

>
Here 6 is the angle between the vector P“(i) and the axis of the chain.

A solution of this equation is shown schematically in Fig. 1. We find that

e"(%) = 5?7 [l _ k?cosia++(:/2)sin?9 ] -

when ¢'(k) > ¥ke and e“(i) = 0 when e'(i) < fike, Thus, the states of the lower branch of
Fig. 1 do not attenuate, whereas the states of the upper branch have an appreciable radiation
width. The cross on Fig. 1 denotes arbitrarily the limit of the spectrum: here |e"| = e'.
€" = Af2e' when k=~ O, and if A = 1 (eV)®? and €' = 5 eV, then ¢" = 0.1 eV,

& ¢ ke
hke ¢
X
E(K) E(R)
3 13
Fig. 1 Fig. 2

We can consider similarly the case of a planar crystal. Assuming for simplieity that
the vector ?L(O) is perpendicular to the plane of the crystal, we find that when k < % the

equation for ¢! has the following form

where - °
B = 8E§(1T:) Hvu(o)l Ja2rBe?,
At the same time
le"| = BRI 2(e ' (7)) 3(2)7, (13)

> > >
if €'(k) > rke (upper branch of the spectrum), and €"(k) = 0 if e'(k) < ¥ke (lower branch of
the spectrum). A plot of e'(i) is shown in Fig. 2. For the upper branch of the spectrum we

have with high accuracy

et(k) = Eu(i)[l + X }, (1)

k

where E = hE*/thzcz. The excitons of this branch have a relatively large group velocity,
v = E“(O)/hg = 107 - 10® cm/sec and should interact weakly with the lattice vibrations. The

225



cross on Fig. 2 denotes the 1imit of the spectrum. Here the elementary-excitation attenuation
due to the vessibility of emitting a photon becomes too large (le"]| ~ e').

The foregoing singularities of the spectra can occur if the uncertainty of the wave
vector, connected with the finite size of the crystal, is smaller than the wave vector k
~ E“/hc, in the vicinity of which the retardation is significant. It follows therefore that
the retardation effects can take place if the dimensions of the crystals exceed the wavelength
N =nc/E . The excitons should have in such crystals a lifetime ~10713 _ 10715 sec, which can
be discerned from the luminescence damping time, from the absorption and emission line shapes,
ete. There should be practically no Stokes shift of the lines in such systems.
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1) The radiation width of the excited states of nuclei in one-dimensional and planar

structures are considered in several papers [6,7].
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We generalize here the theory developed by Adams and Holstein [1] to include the case
of an isotropic but nonstandard band (such as the conduction band of InSb, InAs, etc.), and
discuss the influence of the spin splitting of the Landau levels on the oscillations of the
transverse magnetoresistance in n-InSb. The dispersion law for such semiconductors was ob-
tained by Kane [2], and also by Bowers and Yafet [3] for the case when a magnetic field is
present.

To solve the equation of motion for the density matrix by the method of Adams and Hol-

stein [1], we have determined the electron spectrum in crossed electric and magnetic fields
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