fnother interesting fact is that an increasc in the depth of modulation is accompanied
not only by a narrowing of the high-frequency spectrum, but also by a shift of the frequency
of the maximum oscillation amplitude to the modulating frequency. When @ = 0.15 the maxima
of the oscillations coincide. As seen from Fig. 2d, the spectrum in the 50 kes - 30 Mes re-
gion is then fully suppressed. In the O - 50 kes region the amplitude drops by a factor 2 - 3.

Simultaneously with the change that modulation produces in the spectrum,a 30% decrease
is observed in the ion current (in individual cases up to 40%). The plasma column diameter
decreases when the low-frequency oscillations are stopped. This decrease in diameter is ap-
parently due to the decrease in the anomalous diffusion due to the low-frequency oscillations.

The experimental results indicate that prior modulation of the beam makes it possible
to suppress not only the high-frequency oscillations over a wide range of frequencies, but
also the low-frequency oscillations excited by the two-stream instability [4,5]. We have
shown that the low-frequency oscillations are produced by the high-frequency ones.

For a conclusive answer to the question whether low-frequency oscillations are the re-
sult of nonlinear interaction between high-frequency waves or to static potential wells caused

by the high-frequency fields additional research is necessary.

[1] E. A. Kornilov, 0. F. Kovpik, Ya. B. Fainberg, and L. I. Bolotin, Coll. Vzaimodeistvie
puchkov zaryazhennykh chastits s plazmoi (Interaction of Charged-particle Beams with
a Plasma), p. 18, Kiev, 1965.

(2] E. A, Kornilov, O. F. Kovpik, Ya. B. Fainberg, L. I. Bolotin, and I. F. Kharchenko,
ZhTF 35, 1378 (1965), Soviet Phys. Tech. Phys. 10, 1069 (1966).

(3] I. F. Kharchenko, Ya. B. Fainberg, E. A. Kornilov, R. M. Nikolaev, E. I. Lutsenko, and
N. S. Pedenko, ibid. 31, 761 (1961), transl. 6, 551 (1962).

(4] Ya. B. Fainberg and V. D. Shapiro, Atomnaya energiya 19, 336 (1965).

[5}] A. K. Berezin, G. P. Berezina, L. I. Bolotin, Yu. M. Lyapkalc, and Ya. B. Fainberg,
ibid. 18, 315 (1965).

A NEW RESONANCE CONNECTED WITH MUTUAL DRAGGING OF ELECTRONS AND PHONONS

¥. G. Bass

Institute of Radiophysics and Electronies, Ukrainian Acadeny of Sciences
Submitted 1 March 1966

ZhETF Pis'ma 3, No. 9, 357-361, 1 May 1966

This paper is devoted to an investigation of the effect of the mutual dragging of elec-
trons and phonons on the propagation of electromagnetic waves in semimetals and degenerate
semiconductors situated in an external magnetic field.

Assuming the electric field to be weak and negelecting spatial dispersion, we seek the

distribution functions f and N for the electrons in the form

£ = fexp( SBL= S0 ) 4174 (H(p), o @

il iioRs

), W= Lexp( B2 1124 (i),

oo

251



Here D is the electron quasimomentum, m its effective mass, e(p) = p>/2m its energy, €, the
Fermi energy, T the temperature, w(q) the phonon frequency, and q the phonon quasimomentum.
The additions to the equilibrium functions fb and Nb are assumed small.

In analogy with [1], we can obtain from the system of kinetic equations for f and W

the following system of equations for X and E:

> P >

ax e > ¥ n dfy /> ekEp d4f,

==y = X I =0 2 = - —Q

7 oo [Ex X1+ v X+ 222 [V(a)d*w (q)W(q)dq =2,
0

(2)
St v - %}’gﬂfﬁ(p)@ = o,
q/2

where T is the external magnetic field, T the alternating electric field, e the electron

charge, W(q) the probability of electron-phonon collision with & change of momentum by q,

v =v_ ., +v s v . and v the frequencies of electron collisions with impurities and
e e-1i e-ph’ "e-i e-ph
i = + + .+ H
phonons, respectively, Vph vph—e vph—ph Vph—l vph—b ‘ vph-e’ vph—ph’ Vph-i’ and Vph-b are
the frequencies of phonon collisions with electrons, phonons, impurities, and sample bound-
aries. The formulas for v and v are
e-ph ph-e
2
e-ph hcns ) h-e €(q/2) - €g ¢
PP a P alexp(=d ) +1]

It is assumed in the derivation of (2) that #iw(q)/T << 1, i.e., the scattering of the elec-
trons by the phonons is elastic. If the electron gas is fully degenerate (dfo/de =-8(¢ - €g))
and the electromagnetic field is monochromatic with frequency w (ﬁ = ﬁo exp[-iwt]), then it

is convenient to seek i in the form
> >
X = k(eo)8(e - €o) exp(-iwt). (4)

We then obtain from (2) an easily-solved algebraic equation for %. Calculating the current J

with the aid of the electron distribution function, we get:

iw w
2
1w (& - - (B x ] - ()R @D
J = 3 (5)
m(? - wﬁ)
where E = E/H, wH = lelH/mc is the Larmor frequency, N is the carrier density, and 0 is
given by 2po o 2po
- a*W3(q)v_, (a) 2
O e R (R =T PPy ©
o + vph(Q) o + vph(Q)

po is the limiting Fermi momentum. It is easily shown that if the following inequalities are

satisfied
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then @ = w + ive.
In this case formula (5) takes the same form as in the absence of dragging, i.e., at
sufficiently high frequencies the dragging does not affect the propagation of the electromag-

netic waves. If the conditions of strong dragging v are satis-

>> v + v .
ph-e ph-ph ph-1i ph-b
fied, and the field frequency is so small that the inequality aﬁ/v%h_e << [ holds, then the

expression for Q is 2po 2Do “( )
v + v R
Q= i<v L UPT a° aq + 21 @ Wopph ¥ Yoh-i T Vphoo dq)
e-1 N ;
T mpd Yy ((a)%W(a) mpg (i q))?
2
Po . (8)
2T q
+ Wy dqe.
mpg Halq 4
0

To proceed further we must make more precise the phonon dispersion law and the dependence of
W(q) on q. We consider first acoustic phonons, for which %fw(q) = sq (s is the speed of

sound). Simple calculations yield for 9 the formula

6
Q=%—;n—:2(iv' + ), (9)

where the order of magnitude of v' is estimated from the relation

Yt o~ D ms2 v (2po) + v (200) + v (200) + a2 ) (10)
16T Te-it“to ph-ph* “F0 ph-b\ <0 v_ph'_—(—Te 2P0
Substituting (9) in formula (5) for the current, we get
ﬂB w, 2
E H 2 > H > > >
¥ 3 1Mo - iv')s? E - =7 [Exh] - (557 h(Eh) )
= ~ s
» T (w + iv")2 - wf{

where

~ 3 |e|Hs?

®4 =18 er

The denominator in (11) has a resonant character, the resonance ocecurring at frequency
&U. The width of the resonance line will be of the order of v'. We note that by virtue of
the assumption that the electron scattering by the phonons is elastic we have (16/3)(T/ms®)
>> 1, and consequently mH >> $H. Thus, the new resonance occurs at a markedly lower fre-
quency than ordinary cyclotron resonance. The range of resonant frequence aH is defined, in

accord with the foregoing, by the inequality

~

v < < <

H Voh-e * (12)

The left-side inequality is necessary to maske the line sufficiently narrow. If we assume that

the semiconductor or semimetal is sufficiently pure, so that scattering by impurities can be
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neglected, then v' ~ s/L, where I is the minimum dimension of the sample. A formula for
Voh-e is given in [1]. Numerical estimates for bismuth show that for T ~ 10”15 erg (10°K)
and L~ 0.1 cm, @ lies in the interval between 10® and 101° cps. Conditions (12) can be
realized in experiments.
A similar calculation for optical phonons under strong-dragging conditions leads to
. le|mi
64(312)3/3  cmn2/3

(wp is the end-point frequency of the optical phonons). It is apparently a much more com-
plicated matter to observe optical phonons than acoustic ones. We note that the predicted
resonance can be readily distinguished from cyclotron resonance, owing to the specific tem-
perature dependence of the resonance frequency.

The author thanks I. B. Levinson and Ya. B. Fainberg for valuable remarks.
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ERRATA

In the article "New Resonance Connected with Mutual Dragging of Electrons and Phonons"
by F. G. Bass (Vol. 3, No. 9, p. 233) the factor in formula (9) should be 4/3 and not 16/3,
and consequently the factors in (10) and (11) should be 3/4 and not 3/16. 1In the estimate
preceding Eq. (12) it is likewise necessary to replace 16/3 by 4/3.





