cidences in the two fast y detectors. The obtained spectrum shows an intense anomalous max-
imum near 90 keV, which apparently belongs to the low-energy levels.

The delay factors of the 118- and 256-keV levels relative to the single-particle esti-
mates after Moszkowski, are equal to § and 670 respectively.

The latter suggests that the 256-keV level is £-forbidden with multipolarity ML and
level spin 7/ 2+. The lack of additional information on the experimental quantum character-

istics of Pm'SY does not permit an unambiguous discussion of the results.
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A few years ago Nambu [1] proposed that the axial current of £ decay is rigorously con-
served in the 1limit when the pion mass vanishes, m > O.

It was shown in [1] that the Goldberger-Treiman condition is satisfied exactly in this
limit. If we take into account the smallness of the pion mass compared with other hadrons,
then it becomes clear why the Goldberger-Treiman condition is apparently satisfied in the
real world. In this note, on the basis of Nambu's hypothesis and under the assumption that
weak and electromagnetic currents from an SU(3) x SU(3) algebra, we obtain several relations
that are valid in the limit as mn -+ 0. We proceed to der%ve these relations. Let ,ji5(x)
be the axial current of the i-th isospin component, and j;(x) the vector current of this com-
ponent. We start from the formula:

3,35 (BIT 300 gis(xt) Iy = 1™ (8]} 18y 3) o(x - x7) (2)
(3, = o=, aé = a/axé).

In the derivation (1) we took into account the equalities

.1 PR | . P s ik 2 Ty
3, Ig5(®) = 03 [3gs(®)s dgs(x) ], = 367 i(x) 8(x - &), (2)
If we take the Fourier transforms of (1) with respect to x and x' (corresponding to the
momenta ¢ and q') then this equation can be expressed graphically as shown in Fig. 1, where
the short dashed lines correspond to the current operators. We now let q and q' approach O 1) .
In this limit, the main contribution to the left side of (1) are made by diagrams which have

pion poles both in g and in q'. If we denote the amplitude of the transition of an axial
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current into a pion with momentum q by f-qOL and assume that the propagation of the pion cor-
responds to a propagator 1/q%, we obtain in the limit as q, q' - O the equation shown in

. 2)
Fig. 2 .

Comparison of Figs. 1 and 2 leads to the formula:

_ i gt ikt
My o Bl sk =3 (27 A" € Maoma gk (3)
where MA + B+ I - is the sum of diagrams that transform A and B into two pions 7 and nk
with known momenta g and q', while i and k are isotopic indices. M . is the sum of

A~ B+ Jé
diagrams that transform A and B into a current jé with momentum q + q'. All the relations
of [3] follow from this formula.

To obtain additional relations we use a formula derived by a method similar to that

used to derive (1):

3,34 (BT 5(x) 355 (x") 35 () 18) = (BIT35(0) 35 ") [4)338(x - x*)

(%)
+ (BIJ'?(X) |ays(x - x")8(x - x").

+
Here j~ = (j' * i3®)/ /2 and jeM = 3 + 8/ /3 is the electric current. In addition to (2),
we used the formula:
.+ .eM [ s —>' .+
X X = 8(x - x X).
(3553 3R, L e = BF - B 5500 (5)
If we separate in the left-hand side of (4) the pole diagrams with respect to the =
meson, we obtain
o) _ 1 - G,B o7
faMA >B+at -1 +y " 2(a-q )B A+B+y+7y"' *Myo.pe 7' (7

Here M are the Feynman amplitudes, y the photon, y' the "isovector photon," and a and B

their polarizations. The most interesting formulas (7) are obtained if we take |A) = Ino)
and [B) = |o):
a, O + - (0]
(0 > o xy) = 3(q - a'g MR > 7+ 97) (8)

(the second term in (7) is forbidden by virtue of C-parity). As a result of SU(3) symmetry
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(12380 35 x) Loy =

Therefore:

(0’ > x'xy) =

hWY Y]

(q

Wi

(123300 35 (x") [0« (9)

a")g WP > 29). (10)

We introduce the decay amplitudes:

Mg'(no > 1r+7t-7) = le

IVIO'B(T]O +2y) =f

0> 2ny Capys K & I
(11)

k. k!

o > 2y “ays %y %5

(k and k' are the y-quantum momenta, and q and q' the pion momenta).

ié -k

q K
s \ /,{05 ks o5

7
- ][[ j[k, + o
7, \JJ ? 7*7‘/7

Fig. 3

We see from (11) that formula (8) is, strictly speak-
ing, incorrect, for owing to the bilinearity of the am-
plitudes (11) in q, q' and k, k' the non-pole terms in
the left-hand side of (6) can make a contribution compa-
rable with the pole terms. However, the two-pion state
which is the lowest in terms of mass does not yield cor-
rections to (8), because of kinematic reasons. Indeed,

let us consider the amplitude shown in Fig. 3.

The contribution from the lower block can be written in the form

 §
A(p, q + q") € vor (q +

(p is the integration variable).

1
4 )v Ky Py

Therefore in the limit as g, q' + O the amplitude of Fig. 3 tends to zero, and when
multiplied by qugé it cannot compete with the pole term which is bilinear in g and q'. One
can hope that the remaining diagrams yield only a small correction to formula (8) 3). If we
neglect this correction, then we get the following relation from (8)

e f2 f 2

1’]0—»21(7=2fn0—>27.

From (12) we get
0 +-
M > a0 y) ooy

(0}
r(n~ > 27)

(12)

(13)

Experiment yields for this ratio 15%.

The author is grateful to M. Baker, A. A. Migdal, and K. A. Ter-Martirosyan for useful

discussions.
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1) The method used for the remainder of the proof is similar to that used in [2].

2) The amplitude f is connected with the width of the nue decay by the formula
2

G2 2 m e
F(KHE):.—W_ME- 1—-—“% . (6)

The heavy lines in Fig. 2 correspond to the pions.

3)

Similar reasoning can be used also to explain why the correct ratio of the decays

o noy and,up - n+n-no is obtained in (3).

CURRENT COMMUTATORS AND RADIATIVE DECAYS OF THE 7 MESON
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(Abstract of Article published in JETP)
On the basis of the current commutators, the following relations are obtained between

the probabilities of the radiative decays of pseudoscalar mesons:

+ -
win-> oy _
54t - 018
w(X > 7 1) -5

win > 2y )

VORTEX ISOMERS OF NUCLEI

and
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If nuclear matter is a superfluid liquid, then a state corresponding to a drop of this
liquid is possible, i.e., a nucleus with a quantized vortex [1] passing along the axis of the
drop.

The circulation of the velocity along a contour surrounding the vortex, as is well
known, equals ﬁ/m, where m is the mass of the bosons making up the superfluid liquid. This
means that each such boson makes a contribution equal to H to the angular momentum. Conse-
quently the total angular momentum of the nucleus in the vortical state is equal to nfi = zﬁ/2.
It is assumed that the role of the bosons, whose number equals n, is played by o« particles.

Since the rotation is not similar to rotation with constant angular velocity (w ~ 1/r2
in the presence of a vortex), the equilibrium shape of the drop has the form shown in Fig. 1,

with a dip on the axis. The greatest interest attaches to the minimum energy Em of the
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