was to call attention to NMR as an effective tool for the study of the structure and distribu-
tion of the internal fields in superconductors of the second kind,

In conclusion I am grateful to M, I, Kaganov for discussions,

[1] I, O, Kulik, JETP Letters 3, 183 (1966), transl. p. 116.

(2] I. 0. Kulik, JETP 50, 1617 (1966), Soviet Phys. JETP 23, in press.

[3] A. A. Abrikosov, JETP 32, 1442 (1957), Soviet Phys. JETP 5, 1174 (1957).
[4] A. lLoesche, Nuclear Induction, Chapter 2, IIL, 1963.

DISTRIBUTION FUNCTION OF DISTANCES BETWEEN ENERGY LEVELS OF AN ELECTRCON IN A ONE-DIMENSIONAL
RANDOM CHAIN

V. L. Pokrovskii

Institute of Theoretical Physics, USSR Academy of Sciences
Submitted & June 1966

ZhETF Pis'ma 4, No. &, 140-1kk, 15 August 1966

The distribution of level spacing in systems that are in some sense random has recently
again attracted persistent interest on the part of the theoreticians. Physical examples of
such systems are atomic nuclei in strongly excited states [1,2], and small metallic parti-
cles [3,4].

Random systems are presently described phenomenologically. Dyson (2] has proposed that
level spacing can be described by one of three possible ensembles (unitary, symplectic,
orthogonal), depending on the symmetry properties of the system. A similar initial hypothesis
is used by Gor'kov and Eliashberg [4]. It is assumed in this case that these ensembles cor-
respond to maximally randomized systems. It is very attractive to attempt to find, starting
from the general principles of dynamics and probability theory, arguments in favor of Dyson's
distributions, of at least the same type as already exist for the Gibbs distribution. In
addition, it would be interesting to ascertain which ensembles describe level distribution
for incompletely random systems.

In this paper we investigate the simplest one-dimensional model for which it is pos-
sible to obtain an explicit solution of the problem of the distribution of distances between
energy levels. The obtained distribution has no similarity whatever to the Dyson distribu-
tion [2]. The character of the distribution (very narrow Gaussian peaks) is apparently con~
nected in its essential features with the assumed simplifications of the model (one-
dimensionality, absence of interactions between "electrons"). Since, however, this is the
only known example where the problem is solved exactly, its results are also of interest
in themselves.

Let us consider a one-dimensional chain of potential centers between which a quantum
particle (electron) moves. For simplicity let us assume that the effective radius of the

center is much smaller than the average distance between centers. In the zeroth approxima-
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tion we can assume that the electron moves in a field with a potential:

N
v(x) = als 8(x - x_). (1)
=1 n
The distances between the peaks ln = X1 % differ by random quantities which obey a

specified distribution law P(Z). It is assumed further that the correlation functions
P(ln, ln,) - P(ln)P(ln,) decrease sufficiently rapidly with the "distance” |n - n'[. The
meaning of this condition will be defined more accurately later.

The exact formulation of the problem is as follows: Let there be given a configuration

' - arrangement of the points x;, Xz, «.. X For the given configuration I', the Schrodinger

N
equation

L R (2)

with V(x) specified by formula (1) and with the boundary conditions
¥(xa) = ¥(x) = O (3)

has a set of discrete eigenvalues kn. The problem consists in calculating the distribution
function Q(k, k'), averaged over all I', of the distances between the neighboring eigenvalues.
In other words, it is required to find the probability Q(k, k')dk' that if k® is an energy
level, then the level having the next higher number lies between k'2 and k'® + 2k'dk'.
So far, only the question of the number of eigenvalues in a specified interval (k,
k + dk), averaged over all the configurations I', has been considered in the past [5-11].
Since the potential V(x) and the boundary conditions (2) are real, the wave function ¥

is also real. In the interval (xn, Xn+l> it can be written in the form
vo= A sin[k(x - xn) + @n]. (%)

It is easy to find the connection between ?, and Pt

cote . = cot((pn +k ) +e; €= a/k. (5)

Putting x; = 0 and @, = 0, we satisfy one of the boundary conditions (2). The second condi-

tion is satisfied if we put

Ppgp = ™ (6)

where m is an integer. If we agree that o, + kln differs from ®n+l by not more than *rx,
then the number m in (6) coincides with the number of zeroes of the wave function, i.e.,
with the number of eigenvalues smaller than a specified k, or with the number of the level.

Thus, let the condition (6) be satisfied. Our problem reduces to the following: find
the probability that

(k") < (m+ L)n) (k' + ax'). (7)

Pyl < Pl
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We use the readily-proved monotonicity of P, as a function of k for specified T'. We note

that Pyl for arbitrary k and T" can be represented in the form of the sum
N

q)N-I-l(k’ r) =r5 An(k’ r); An(k’ r) = q)n+l(k’ r) - (Pn(k: r). (8)
We represent the difference similarly:
Prer (ks T) = @p .k, T) = (X' - k)ilmn(k, r)/ok. (9)

We can confine ourselves to terms linear in (k' - k) only when
N LI 2
RSB .

But NA/k coincides in order of magnitude with v(k) = dm/dk, so that our estimate denotes
simultaneously the following:

(' - 0% ()]t (10)

k

The estimate (10) can be satisfied even in the case when many levels are contained between
kand k': (k' - k) > [v(k)]"1.
The condition of (6) and (7) can now be formulated as follows: Tfind the probability

that x EN » (k, T) n
T < < T (11)
k' + dk k =1 Sk k k

under the condition that @N(k, ') = mn, where m is an arbitrary integer. Tt has been
established in [6] that for the phase 9, reckoned on a circle from O to @, a stationary
distribution is established at large values of n. The correlation between ?, and P (which
are close in number) decreases rapidly with increasing "distance" |n - n'|. Therefore the

sum in (11) obeys a Gaussian distribution of the type

( aa>2 N
L-N = N
b ¥y
- SEPIIE o (12)

W(Z)dz = A exp-{—

We imply here averages over the stationary distributions as indicated above, and A is

a normalization constant. According to (1l1) and (12), the sought probability is

atk, xax' = & exp d- (K - 1) 00 - 0B f et ac, (13)

where Ak = [v(k)]™ ! is the average distance between neighboring eigenv?lues. Thus, the

distribution has a Gaussian character with a narrow peak (of width ~N2) about the mean value.
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Recently new sources of intense ultrasonic and hypersonic waves have become available;
these are powerful laser beams, which produce in a medium a flux of volume waves that cause
induced Mandel'shtam-Brillouin scattering.

We point out in this article the possibility of self-focusing and focusing of hyper-
sonic rays from these or other sources, and estimate the conditions for the appearance and
possible consequences of these effects.

The effects under consideration are based on nonlinear processes that produce a dif-
ferential in the properties of the medium inside and outside the sound ray. In particular,
the effects of self-focusing of sound recall the nonlinear effects of self-focusing on

electromagnetic rays in media [1-6].

1. Focusing of Sound Ray by the "Wake' of a Light Ray
Al g

A light ray may modify the properties of the medium enough to change the propagation o:
a sound wave., For example, absorption of light and heating of the medium change the velocit;
and the propagation of sound in those portions of the medium through which the light has
passed (the so-called "wake" of the light ray). In dense media (liquids, solids) the speed
of sound usually decreases when energy is released in the medium: dcs/dT < 0, so that the
thermal wake of the ray or of part of the ray with increased intensity (light filament) can
serve as a sound conductor, reflecting sound on the boundary of the wake.

If the glancing angle @ between the direction of incidence and the layer of discon-

tinuity on the boundary of the heated region is such that cosp > ¢ i.e.,

s.inside/cs.outside’
for small values of ¢ < ,/—Acs7cs, then total internal reflection of the sound will occur
and the light wake will serve as an acoustic waveguide. Usually AcS/AT ~ -k x 102 cm seclde¢
where k is of the order of several times unity. For example, for AT ~ 0.1° and cy = 105

cm/sec we obtain
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