=l,AE+=AE_=AEO)

Ing=1n A - AEO/2kT,
and when T << TC

Ing = 1ln Ac_ - (AEO +m§+a)/2kT.

Iet us compare the term QMS with B. By virtue of the estimate (4), the "deformation" contri-
bution to the change in the slope of ln o will exceed the contribution due to magnetization
when NkT./ps® > B/0Eqe To this end it is sufficient to have B/AE KT, < 0.1 if the foregoing
numerical estimates are used.

The author thanks I. M. Lifshitz for a useful discussion.
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We derive in the present note, using the algebra of single-time commutators, a general-
ization of the Kroll-Ruderman theorem [1] to include the case of electroproduction of pions at
momentum transfers ~uZ,

The amplitude for the production of a n+ meson on a proton by a virtual y guantum can

be represented in the form
T, = 1/dx exp(iax) @ - 12)(p"[0(x;) (3 (0)5 o(x) TP} (1)

Here j“l is the electromagnetic current, @ the meson field operator, and p, p', andq the mo-

menta of the proton, neutron, and meson, respectively.
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When g2 = p® we can replace, without any approximation, ¢(x) in (1) by the divergence of
the axial current cavav(x) (¢ = - ng(O)/N/EmpagA), which has a pion pole. Integrating (1)
further by parts, we obtain

T, = -icfax exp(iax) (0 - wB)(p'[8(x,) [5(0)5 a,(x)1]p)

/ _ o . (2)
+ cq, Jax exp(iax) (@ - 1B)(p'[0(x)) [5 (0), & (x) 1|0},
which goes over when q -+ 0 into

T o= ol - s - 2 1 s )

T, = %{T“ ch/dx exp(19x) @ - wB)(p' [8(x,) [3,(0), av(X)]lP)} (3)

- e (3,000, [ oG 0)I0).

We assume that the single-time commutator in (3) is equal to a“(o) {2]. (The consistency of
the local commutation relations is discussed in a paper by Sokolov and Khriplovich [3].) Thus,
at q = 0 the amplitude of the process under consideration is connected with the matrix element

of the axial current, which can be written after separating the pion pole in the form [4]

Kk w¥ o K(K®))Y 1 o~
(P'la“(0> [p) = ga {h(k2)gw - -{{?th(ke) YT WJ} u(p')7s7,w(p) = Tz T ()

where K(k®) is a slowly varying function.

It must be pointed out that the first term in (2) vanishes when g© = p®. However, it
must be taken into account in any continuation off the mass shell, in order that the longi-
tudinal part of Tu coincide with that calculated in accord with the corresponding Ward identi-
ty [5].

Let us compare (4) with the contribution made to %“ by the single-nucleon and single-

meson states as g > O. Regardless of the manner of taking the limit, we obtain

1 y kk & F (k3 0))
icus Tﬁ = 8y [Fl(ka)g“v - kdu- TR ) J u(p')rsy,u(p) . (5)

We have left out a term proportional to the small isoscalar magnetic form factor. It has the
wrong G-parity and should cancel out the contribution of the non-pole diagrams. In (5),
Fz(kz) is the isovector electric form factor, and Fﬂ(kz, 0) is the form factor of the pion at
g2 = 0.

Wnen |k2| ~ 42 we can take into account only the strongest dependence on k2, given by
the pion pole. Putting here n(k2) = K(k2)/K(0) = F_(k?, 0)/K(0) = F‘l’(kz) ~ 1, we see that
(4) and (5) coincide. Since only pole terms contribute to the second term of %u vhen q -+ O,
we conclude that the non-pole part of the electroproduction amplitude is smell at this point.
This part of the amplitude is expected to change little on going to G = M andla = 0. In this
case the amplitude will be essentially described by the pole diagrams, as before, at the pion
production threshold, too. This statement generlizes the well-known low-energy Kroll-Ruderman
theorem to include the process of electroproduction of a pion in the momentum-transfer region

~uZ, The difference lies in the need for taking account in this case of the diagram with the
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pion pole. At the threshold, this diagram describes interaction only with time-dependent
guanta, which are not present in the photoproduction process.

It is interesting to ncte that the validity of the Kroll-Ruderman theorem is evident
simply from the fact that all the transverse covariants, in terms of which the photoproduction
ks 7s(B(ak) - q (P01, 7sDy (oK) - o &1, 2750y, (PK)

- AR
- Ppk] - myscuvkv (P = (p+ p")/2) vanish when k = 0. Therefore a zero contribution will be

amplitude is expressed [6], viz. g0

made only by the pole diagrams containing the characteristic infrared factors (pk)/2 etc.

In conclusion we point out that the assumption that the functions h(k®) and K(k2) are
slowly varying enables us to calculate the effective-pseudoscalar constant in p capture. In
this case the momentum transfer is equal to k% = -0.52 p®. The sought constant can be written

in the form

2mm 2 o
- M 2 b K(k
gP - gA kZ [h(k ) + kz - HE K(O } (6)

(mH is the muon mass). Putting again h(kx®) = K(k?)/K(C) =~ 1, we obtain
gp = - 6.7g,. (1)

Estimates leading to a similar result [7] are widely known. We wish to emphasize, however,
that the obtained value is not merely of the correct order of magnitude. Allowance for the
change in X(k®), with the aid of linear extrapolation (X(0) = 0.87, K(p®) = 1), leads to a
value -7.5g,. Thus, the true value of gp can hardly differ from (7) by more than 10 - 15%.

The authors are grateful to V. G. Zelevinskii for a discussion of problems connected

with the effective pseudoscalar.
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Experimental determination of the nucleon-polarizability coefficients yields very use-
ful information connected with the internal structure of the nucleon. Gol'danskii et al. [1]

obtained for the proton electric polarizability coefficient a value %, = (0.9 £ 0.4) x 10~42
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