SPIN WAVES IN NONFERROMAGNETIC METALS WITH OPEN FERMI SURFACES
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The splin waves in nonferromagnetic metals, predicted by the theory of a
degenerate electron liquid [1, 2], were observed experimentally [3, 4] in
alkali metals, the Fermi surfaces of which are nearly spherical. At the same
time, such spin waves can exist also in metals with sharply anisotropic Fermi
surfaces. Several theoretical premises for spin waves in such metals were
formulated in [5 - 7], and in concrete applications cof the theory of [5] prin-
cipal attentlon was paid to closed Ferml surfaces. In the present communica-
tion we present results pertaining to the case of unclosed surfaces, leading
to the presence of open electron trajectories in momentum space, and reveallng
essentlal features of spln waves in such metals.

Assume that among the electron trajectories
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where the z axis 1s oriented along the constant magnetic field B, there are
both closed and open ones. Then in accordance with [53,+the dispersion equa-
tion of the spin waves with frequency w and wave vector k can be written in the
form

(lfﬂ +;i7)xr...k)-1 (2)

Here unlike in [5]

X(w, k) = X°(@w,k) + X (w, k), (3)

where X°© is the contribution of the closed trajectories, determined in [5], and
the contribution of the open trajectories is given by the expression
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where SO denotes that the integration is carried out over the surface of the

open trajectories, 3(5) is the velocity of the electron on the surface, 1; and
T2 are the relaxation times of the momentum in the spin of the electron, re-
spectively
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Y is a constant characterizing the correlation of the electrons, and §y =
2ueB/(1 + B)A = ws/(l + B) is the characteristic frequency of the spin reso-

nance, with Wy the usual Bloch resonance frequency due to the spin reversal of
the conduction electron.

Bearing in mind the expression obtained in [5] for XC, let us discuss the
consequences that follow from the dispersion equation [2]. Assuming the re-

laxation time to be sufficiently large, we neglect the wave dissipation. We
discuss first the long-wave limit, when we have from (2)
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here the averaging over the closed and open Fermi surfaces is determined re-
spectively by the formulas
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0 1s the cyclotron frequency of the Larmor rotation of the conduction electron,
and for closed trajectories we can expand the velocity vector in a Fourier
seriles
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The unique character of the contribution of the open trajectories is con-
nected with the occurrence of a term that does not depend on the orientation
of the magnetic field relative to the direction of the anisotropic Fermi sur-
face. We emphasize that here, too, a qualitative difference is observed be-
tween the spin waves and the cyclotron waves. Namely, whereas the cyclotron
waves become forbidden in the presence of open trajectories, this is not the
case for spin waves.

Nevertheless, the open trajectories do impose a certain hindrance on the
spin waves. This hindrance, however, differs qualitatively from the hindrance
of the cyclotron waves. In order to demonstrate this, we turn to the case of
propagation of spin waves in a direction perpendicular to the constant magnetic
field. As shown in [5], in the case of a closed anisotropic Fermi surface,
the dependence of the Larmor frequency on the momentum P, leads to the presence

of forbidden bands, outside of which the spin waves are possible for all wave-
lengths, and, in particular, in the 1limit of short waves, for wavelengths much
shorter than the radius of the gyroscopic rotation of the electron. The pres-
ence of open trajectories leads to a limitation on the possible wavelengths or,
accordingly, on the values of the wave vectors k of the spin waves. Indeed,
by directing the x axis along the vector k, we can easily see from expression
(4) that, upon satisfaction of the equality

kv =w £t
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where Vo max is the maximum value of the x-projection of the electron velocity,
k]

resonant coherent absorption of the wave by electrons 1s possible upon rever-
sal of their spin. Such an absorption, obviously, has as its analog the in-
verse Cerenkov effect, which leads to Landau damping. Formula (7) makes it
possible to express the frequency in terms of the wave vector and makes it
possible, in conjunction with the dispersion equation (2), to find the value of
the limiting wave vector and of the frequency corresponding to it. We illu-
strate the foregoing using as an example open trajectories produced by
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intersection of the cylindrical Fermi surface with the planes D, perpendicular
to the cylinder axis. Then (4) takes the form
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It follows therefore that the limiting wave vector is equal to Qy/v. When the
wave vector approaches such a limiting value, the frequency of the spin wave
decreases, tending to zero like
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We note that the vanishing of the frequency at the limiting wave vector is an
indication that there can exist a spatially-periodic paramagnetic structure
which, unlike the structure considered in [8], i1s periodic in a direction
transverse to the constant magnetic field.
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