Data on OS are interesting since they serve as an independent source (along-

side with dt) of information concerning the transverse contributions to the

amplitude (og, like © does not depend on its longitudinal part), and, in par-

t’
ticular, can facilitate the separation of the longitudinal cross section cl.

The author is grateful to M.P. Rekalo for suggesting a consideration of
this effect.
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In amorphous semiconductors, the light absorption coefficient decreases
exponentially at quantum energies hw that are smaller than a certain value Eg,

called usually the optical forbidden band. At the same time, experiment shows
that the density of states in the interior of the forbidden band is apparently
quite large. Fritzsche [1] noted that
these facts can be understood by assum-
ing that in an amorphous semiconductor
there exist large-scale fluctuations

of the electrostatic potential, which
lead to a parallel bending of the
energy bands (see the figure). In-
deed, in such a model there can exist
an appreciable number of electronic
states even on a Fermi level u located
deep in the forbidden band. On the
other hand, absorption of light with
quantum energy fiw < Eg occurs only as

a result of tunneling of the carriers
under the humps of the large-scale
relief, and is therefore very small.

To discuss the conductivity in the
Fritzsche model, it can be assumed
that the carriers behave like classi-
cal particles with respect to the
large-scale potential. It is known
[2] that for a classical particle in
an arbitrary potential-energy relief
V(r) there exists a so-called perco-
lation energy E i.e., the maxi-

Energy scheme of an amorphous semi-
conductor. The wavy lines represent
the bottom of the conduction band
and the ceiling of the valence band.
The solid straight line is the Fermi
level, and the dashed lines are the
perc’ percolation energies of the electrons
mum value of the particle energy E, and holes.
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at which 1t is still possible to find a connective region of space with V(r)< E,
which goes off to infinity in all directions. Only by having an energy larger

than Eperc can a classical particle go through all of space. The percolation

levels for electrons Ee and for holes Eh are shown dashed in the figure. Only

electrons thrown from the Fermi level above Ee and holes thrown below Eh can

take part in the static conductivity. Therefore the conductivity activation
energy AE is equal to min{(Ee - ), (u - Eh)}' The quantity 2AE is usually

called the electric width of the forbidden band. We wish to call attention to
the fact that for a classical potential of general form Ee - Eh < Eg, and con-
sequently 24AE < Eg, i.e., the electric width of the forbidden band is always

smaller than the optical width.

To make this statement obvious, let us consider an arbitrary potential
relief V(7) and call regions with V(¥) < E white, and the remainder of space
black. Obviously, at very small E there is percolation only over the black
region, and at very large E only over the white regions. Let us consider the

arrangement of the critical energies EWhite and Eblack’ at which percolation

over the white occurs and percolation over the black vanishes. It is obvious
that a random potential with a finite correlation radius cannot produce an
arrangement in which there is no percolation in either the white or the black.

Therefore Ewhlte < Eblack The only basis for satisfying the equality Ewhite =

Eblack in an arbitrary potential can be the dimensionality of space. Indeed,
in the two—dlmensional case (V(r) = V(x, y)) we always have Eonite = Bplack?
since percolation over the white means absence of percolation over the black
and vice-versa. In the three-dimensional case, percolation over one color does
not prevent percolation over the other, and therefore generally speaking

Ewhite < Eblack’ i.e., there exists an energy region where percolation over

both colors is possible.

Let us consider now the relief of the potential energy of the electron in

the conduction band. It is obvious that for this relief Ewhite = Ee, and

Eblack = Eh + Eg. Thus, Ee - Eh < Eg and 2AE < Eg‘ The difference between E

and 2AE should coincide in order of magnitude with the amplitude of the bending
of the bands. If this amplitude, as in the Fritzsche model, is comparable with

Eg’ then Eg ~ 2AE can constitute a noticeable fraction of Eg'
Substance E’, ev 2AE, eV (E - 2AE) /E,0 %
2.60 { 3] 2,05- 2,17 [ 3]
As .S -
2%3 2,50 [ 4] 2,32 (5] T2

As7S¢3 1.95 - 2.00[ 6] 1.811[5,6]. 7-10
As ,Te,[7] 0.98 0.80 18
2Assz,!As28e,[8] 1.10 1.00 10
GeTe [ 9] > 0.80 0.65 > 19
Ge,,Si; As, Te 10| 117 0.90 23
Ge,As, Te, S, (10 | 135 1.10 18
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The experimental values of 2AE and Eg are gathered in the table. In ex-

periments on the dependence of the conductivity on the temperature T, one
usually measures the quantity 2AE, which is extrapolated to T = 0 from room
temperature [1]. We therefore compare 2AE in our table with the value of E

extrapolated to T = 0 and obtained in the following manner. The dependence of
the absorption coefficient a on the frequency at large o was first processed by
the formula of Tauc et al. [1] oa(w) ~ (Aw - Eg)z/ﬁw, and the value of Eg at

room temperature was determined. Then, the derivative BEg/BT at T = 293°K was

used to extrapolate to T = 0. In the cases when we did not know this deriva-
tive (GeTe), we determined it from the values of Eg at T = 77°K, assuming by

the same token that Eg depends linearly on T in the 77°K interval. Since in
fact IaEg/BTI always decreases with decreasing T, such an extrapolation method
gives only a lower estimate for Eg. In some of the cited papers, the determina-
tion and extrapolation of Eg were already performed, and all we had to do was

to complete the missing steps. In [11] there are no a(w) curves. We therefore
determined Eg from the criterion oa(hw = Eg) = 10% em™!. Our experience with

the reduction of the a(w) curves by the Tauc method shows that this criterion
is well satisfied for all the substances gathered in the paper.
It is seen from the table that the values of 2AE are much smaller than Eg'

This can serve as a strong argument supporting the model of curved bands for
amorphous semiconductors.
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