Edip = (40,7 + 1,8) A-202 0,01 Mey (8)
0 .

For F( ) and F(l) we used the values obtained by Migdal and Larkin [7] on the

basis of an analysis of data on the compressibility of nuclear matter and its

concentration

Flo) =05, F() =13, (9)

and for vy we used vy = 0.2c. The dashed curve is the function w(A) ~ A-Y/3

which is obtalned by neglecting the Coulomb interaction.

We see thus that the model of the Fermi-liquid drop with free boundary,
which takes into account in addition to the pure nuclear interaction also the
electric interaction of the nucleons, describes well the position of the giant
dipole resonance for a large number of nuclei. In particular, it is possible
to explain why the energy of the giant dipole resonance decreases more slow%y
than the usual A~!/? law for liquids. We emphasize that the parameters F(0

and F(l) which enter in the theory are obtained in this case for an analysis
of data that do not pertain to giant resonance [7].

In conclusion, the authors thank A.I. Akhiezer for useful advice and I.S.
Shapiro and the participants of the seminar under his direction for useful
discussions.
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As is well known, weak solutions of He?® and He" constitute at T << TF
(TF is the Fermi temperature for He?® in solution) a peculiar mixture of Fermi

and Bose liquids. The phenomenological theory of Fermi-Bose liquids was con-
structed by Khalatnikov [1]. In such a liquid, there exist two types of acous-
tic modes. Following [1], we call them first and second sound. When the He?®
concentration in the solution tends to zero, the first sound goes over into
first sound in He II. The second sound propagates through the Fermi component
of the liquid and has much in common with first sound in a Fermi liquid.
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One of the possible methods of observing second sound in a solution is to
excite 1t by oscillations of a plane boundary. We consider below the problem
of excitation of sound in a solution by the indicated method, and find the
ratio of the values of the radiated energy fluxes of first and second sounds.
The ratio obtained is of the order of 10~° at ~1% He' concentration, making it
possible to hope to observe experimentally second sound in a solution when
excited by the indicated method.

We are interested, naturally, in the hydrodynamic region, where both first
and second sound propagate, and neglect dissipation. The calculation scheme
is the same as in Lifshitz's paper on excitation of sound in He II [2].

According to [1], the spectrum of the Fermi excitations is given by

2 A F
L e (B “")Pv, + [F(p, p")8n"dr", (1)

Zm m* 3
where p is the momentum, m¥ the effective mass of the excitation, Am =
m¥(1 + F,/3)"1! - ms, vS the velocity of superfluid motlon ns and ny the
numbers of He® and He" particles per unit volume f(p, ) the Landau func-
tion, F, and F; the Landau parameters, and n(¥, ©, t) 1s the distribution
functlon of the Fermi excitations. It is convenient to write the kinetic equa-

tion for the Fourier component of the distribution function of the Fermi ex-
citations

a - -
8n - Zey v,P,(cos8), (2)

qQ,w
: de n=o0

Here ® is the angle between the wave vector a and the momentum 5. In (2) we
can retain only the first two terms of the sum, since the next terms have a
relative order wt and higher (w is the frequency and T is the relaxation time),
as follows from the conservation laws. In the absence of dissipation, it can
be assumed that vy and v; do not depend on € (see [3]) and are constants.
Averaging the kinetic equation over the angles in the same manner as in [4],
and adding to it the equations of continuity and superfluid motion, we can ob-
tain a complete system of equations describing the solution. We shall not
write this system out here, since it coincides with the system (2.9 - 2.12)

of [4], where it is only necessary to set the extraneous force equal to zero.

Let the sound be excited by a plane oscillating in a direction perpendicu-
lar to itself with velocity v(t) = veexp(-iwt). We write the boundary condi-
tions for the normal and superfluid components of the velocity

LR (3)
’l 32 o
fp® (8 n? + Sn;o Ydr = mynyv, (1)

where the indices 1 and 2 correspond to first and second sound. The energy
density in the wave 1s

E —m4n4 {') + fe(p)&n df . (5)

We carry out in (5) the time-averaging designated by the superior bar. Taking
into account the condition for the extremum of the entropy at equilibrium, and
also relation (1), we have
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*
me F. 4 6

26 = mn,v@ + —— [(1* F,)v2 +(1 N _’_)i] (6)
7 3/ 3

We now find the ratio of the energy fluxes Ii,2 = E1,2U1,2 (U is the speed of
sound) in the lowest order in the He? concentratlon X = ns/(na + ny). Solving
the system (2.9 - 2.12) of [U4] together with the boundary conditions (4) and
(5), and using (6), we obtain ultimately

m
/ =£m_¢(a__~*)j, (7)
1 Vi om m, ¢
For n 9
€
x = 5:10~2, m* = 25 my, a = 4 e = 1,3,

2
m,c dn,

Ve = 5.38 x 10% em/sec, and ¢ = 2.4 x 10* cm/sec we have I,/I; = 2 x 1073,

which apparently makes it possible to observe second sound in a solution upon
excitation by the method under consideration.

The author is grateful to Prof. I.M. Khalatnikov for suggesting the prob-
lem and for interest in the work.
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